Skip to main content

A Hybrid Evaluation Methodology for Human Activity Recognition Systems

  • Conference paper

Part of the Lecture Notes in Computer Science book series (LNISA,volume 8867)

Abstract

Evaluating human activity recognition systems usually implies following expensive and time consuming methodologies, where experiments with humans are run with the consequent ethical and legal issues. We propose a hybrid evaluation methodology to overcome the enumerated problems. Central to the hybrid methodology are surveys to users and a synthetic dataset generator tool. Surveys allow capturing how different users perform activities of daily living, while the synthetic dataset generator is used to create properly labelled activity datasets modelled with the information extracted from surveys. Sensor noise, varying time lapses and user erratic behaviour can also be simulated using the tool. The hybrid methodology is shown to have very important advantages that allow researchers carrying out their work more efficiently.

Keywords

  • Evaluation
  • Activity Recognition
  • Synthetic Dataset Generator
  • Activity Survey

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-319-13102-3_18
  • Chapter length: 8 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   39.99
Price excludes VAT (USA)
  • ISBN: 978-3-319-13102-3
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   54.99
Price excludes VAT (USA)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aztiria, A., Augusto, J.C., Basagoiti, R., Izaguirre, A.: Accurate temporal relationships in sequences of user behaviours in intelligent environments. In: Augusto, J.C., Corchado, J.M., Novais, P., Analide, C. (eds.) ISAmI 2010. AISC, vol. 72, pp. 19–27. Springer, Heidelberg (2010)

    CrossRef  Google Scholar 

  2. Bruneau, J., Jouve, W., Consel, C.: DiaSim: A parameterized simulator for pervasive computing applications. In: 6th Annual International Mobile and Ubiquitous Systems: Networking & Services, MobiQuitous 2009, pp. 1–10. IEEE (2009)

    Google Scholar 

  3. Chen, L., Hoey, J., Nugent, C.D., Cook, D.J., Yu, Z.: Sensor-based activity recognition. IEEE Transactions on Systems, Man, and Cybernetics-Part C 42(6), 790–808 (2012)

    CrossRef  Google Scholar 

  4. Chen, L., Nugent, C.D., Wang, H.: A knowledge-driven approach to activity recognition in smart homes. IEEE Transactions on Knowledge and Data Engineering 24(6), 961–974 (2012)

    CrossRef  Google Scholar 

  5. Helal, A., Cho, K., Lee, W.: 3D modeling and simulation of human activities in smart spaces. In: 2012 9th International Conference on Ubiquitous Intelligence & Computing and 9th International Conference on Autonomic & Trusted Computing (UIC/ATC), pp. 112–119. IEEE (2012)

    Google Scholar 

  6. Helal, S., Lee, J.W., Hossain, S.: Persim-Simulator for human activities in pervasive spaces. In: 2011 7th International Conference on Intelligent Environments (IE), pp. 192–199. IEEE (2011)

    Google Scholar 

  7. Helaoui, R.: Recognizing interleaved and concurrent activities: A statistical-relational approach. In: 2011 IEEE International Conference on Pervasive Computing and Communications (PerCom), Seattle, USA, pp. 1–9. IEEE (2011)

    Google Scholar 

  8. Huynh, T., Fritz, M., Schiele, B.: Discovery of activity patterns using topic models. In: Proceedings of the 10th International Conference on Ubiquitous Computing, pp. 10–19. ACM (2008)

    Google Scholar 

  9. Van Kasteren, T., Noulas, A.: Accurate activity recognition in a home setting. In: Proceedings of the 10th International Conference on Ubiquitous Computing, pp. 1–9 (2008)

    Google Scholar 

  10. Liao, L., Fox, D., Kautz, H.: Location-based activity recognition. In: Advances in Neural Information Processing Systems, vol. 18, p. 787 (2006)

    Google Scholar 

  11. Okeyo, G., Chen, L., Wang, H., Sterritt, R.: Dynamic sensor data segmentation for real-time knowledge-driven activity recognition. Pervasive and Mobile Computing (December 2012)

    Google Scholar 

  12. Philipose, M., Fishkin, K.P.: Inferring activities from interactions with objects. Pervasive Computing 3(4), 50–57 (2004)

    CrossRef  Google Scholar 

  13. Rashidi, P., Cook, D.J.: Discovering activities to recognize and track in a smart environment. IEEE Transactions on Knowledge and Data Engineering 23(4), 527–539 (2011)

    CrossRef  Google Scholar 

  14. Tapia, E.M., Intille, S.S., Larson, K.: Activity Recognition in the Home Using Simple and Ubiquitous Sensors. In: Ferscha, A., Mattern, F. (eds.) PERVASIVE 2004. LNCS, vol. 3001, pp. 158–175. Springer, Heidelberg (2004)

    CrossRef  Google Scholar 

  15. Wren, C.R., Tapia, E.M.: Toward scalable activity recognition for sensor networks. In: Hazas, M., Krumm, J., Strang, T. (eds.) LoCA 2006. LNCS, vol. 3987, pp. 168–185. Springer, Heidelberg (2006)

    CrossRef  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Azkune, G., Almeida, A., López-de-Ipiña, D., Chen, L.L. (2014). A Hybrid Evaluation Methodology for Human Activity Recognition Systems. In: Hervás, R., Lee, S., Nugent, C., Bravo, J. (eds) Ubiquitous Computing and Ambient Intelligence. Personalisation and User Adapted Services. UCAmI 2014. Lecture Notes in Computer Science, vol 8867. Springer, Cham. https://doi.org/10.1007/978-3-319-13102-3_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-13102-3_18

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-13101-6

  • Online ISBN: 978-3-319-13102-3

  • eBook Packages: Computer ScienceComputer Science (R0)