Skip to main content

A Chicken-and-Egg Problem: Which Came First, the Quantum State or Spacetime?

  • Chapter
  • First Online:
Questioning the Foundations of Physics

Part of the book series: The Frontiers Collection ((FRONTCOLL))

Abstract

In this essay I will discuss the question: Is spacetime quantized, as in quantum geometry, or is it possible to derive the quantization procedure from the structure of spacetime? All proposals of quantum gravity try to quantize spacetime or derive it as an emergent phenomenon. In this essay, all major approaches are analyzed to find an alternative to a discrete structure on spacetime or to the emergence of spacetime. Here I will present the idea that spacetime defines the quantum state by using new developments in the differential topology of 3- and 4-manifolds. In particular the plethora of exotic smoothness structures in dimension 4 could be the corner stone of quantum gravity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    There are many books about quantum gravity, for instance [14], and the original papers which I omit to cite.

  2. 2.

    Current experiments at the LHC do not give any sign for extra dimensions (see the Particle Data Group).

  3. 3.

    This infinite construction is necessary to obtain an infinite polyhedron, the defining property of a wild embedding.

References

  1. T. Asselmeyer-Maluga, Exotic smoothness and quantum gravity. Class. Quant. Gravity 27:165002 (2010). arXiv:1003.5506v1 [gr-qc]

  2. T. Asselmeyer-Maluga, C.H. Brans, Cosmological anomalies and exotic smoothness structures. Gen. Relativ. Gravit. 34, 597–607 (2002)

    Article  MathSciNet  Google Scholar 

  3. T. Asselmeyer-Maluga, C.H. Brans, Exotic Smoothness and Physics (World Scientific Publication, Singapore, 2007)

    Book  MATH  Google Scholar 

  4. T. Asselmeyer-Maluga, J. Król, Small exotic smooth \(R^4\) and string theory, in International Congress of Mathematicians ICM 2010 Short Communications Abstracts Book, ed. R. Bathia (Hindustan Book Agency, 2010), p. 400

    Google Scholar 

  5. T. Asselmeyer-Maluga, J. Król, Constructing a quantum field theory from spacetime (2011). arXiv:1107.3458

  6. T. Asselmeyer-Maluga, J. Król, Exotic smooth \(R^4\) and certain configurations of NS and D branes in string theory. Int. J. Mod. Phys. A 26, 1375–1388 (2011). arXiv:1101.3169

    Article  ADS  MATH  Google Scholar 

  7. T. Asselmeyer-Maluga, J. Król, Topological quantum d-branes and wild embeddings from exotic smooth \(R^4\). Int. J. Mod. Phys. A 26, 3421–3437 (2011). arXiv:1105.1557

    Article  ADS  MATH  Google Scholar 

  8. T. Asselmeyer-Maluga, J. Król, On topological restrictions of the spacetime in cosmology. Mod. Phys. Lett. A 27, 1250135 (2012). arXiv:1206.4796

    Article  ADS  Google Scholar 

  9. T. Asselmeyer-Maluga, J. Król, Quantum D-branes and exotic smooth \({\mathbb{R}}^4\). Int. J. Geom. Methods Mod. Phys. 9, 1250022 (2012). arXiv:1102.3274

    Article  MathSciNet  Google Scholar 

  10. T. Asselmeyer-Maluga, R. Mader, Exotic \(R^4\) and quantum field theory, in 7th International Conference on Quantum Theory and Symmetries (QTS7), ed. by C. Burdik et al. (IOP Publishing, Bristol, 2012), p. 012011. doi:10.1088/1742-6596/343/1/012011, arXiv:1112.4885

  11. T. Asselmeyer-Maluga, H. Rosé, Dark energy and 3-manifold topology. Acta Phys. Pol. 38, 3633–3639 (2007)

    ADS  Google Scholar 

  12. T. Asselmeyer-Maluga, H. Rosé, On the geometrization of matter by exotic smoothness. Gen. Relativ. Gravit. 44, 2825–2856 (2012). doi:10.1007/s10714-012-1419-3, arXiv:1006.2230

  13. T. Asselmeyer, Generation of source terms in general relativity by differential structures. Class. Quant. Gravity 14, 749–758 (1996)

    Article  ADS  MathSciNet  Google Scholar 

  14. C. Rovelli, Quantum Gravity. Cambridge Monographs on Mathematical Physics (Cambridge University Press, Cambridge, 2004). www.cpt.univ-mrs.fr/~rovelli/book.pdf

  15. A.N. Bernal, M. Saánchez, Smoothness of time functions and the metric splitting of globally hyperbolic space times. Commun. Math. Phys. 257, 43–50 (2005). arXiv:gr-qc/0401112

    Article  ADS  MATH  MathSciNet  Google Scholar 

  16. A.N. Bernal, M. Saánchez, Globally hyperbolic spacetimes can be defined as “causal” instead of “strongly causal”. Class. Quant. Gravity 24, 745–750 (2007). arXiv:gr-qc/0611138

    Article  ADS  MATH  MathSciNet  Google Scholar 

  17. R. Fintushel, R. Stern, Knots, links, and 4-manifolds. Inven. Math. 134, 363–400 (1998) (dg-ga/9612014)

    Google Scholar 

  18. M.H. Freedman, A fake \(S^3\times R\). Ann. Math. 110, 177–201 (1979)

    Article  MATH  Google Scholar 

  19. G.D. Mostow, Quasi-conformal mappings in \(n\)-space and the rigidity of hyperbolic space forms. Publ. Math. IHS 34, 53–104 (1968)

    Article  MATH  MathSciNet  Google Scholar 

  20. T. Asselmeyer-Maluga, J. Król, Abelian Gerbes, generalized geometries and exotic \(R^4\). J. Math. Phys. (2009). arXiv:0904.1276

  21. T. Asselmeyer-Maluga, J. Król, Exotic smooth \(\mathbb{R}^4\), noncommutative algebras and quantization (2010). arXiv:1001.0882

  22. T. Asselmeyer-Maluga, J. Król, Quantum geometry and wild embeddings as quantum states. Int. J. Geom. Methods Mod. Phys. 10(10) (2013). arXiv:1211.3012

  23. T. Asselmeyer-Maluga, J. Król, Decoherence in quantum cosmology and the cosmological constant. Mod. Phys. Lett. A 28, 350158 (2013). doi:10.1142/S0217732313501587, arXiv:1309.7206

  24. T. Asselmeyer-Maluga, J. Król, Inflation and topological phase transition driven by exotic smoothness. Adv. HEP 2014, 867460 (2014). http://dx.doi.org/10.1155/2014/867460, arXiv:1401.4815

  25. T. Asselmeyer-Maluga, J. Król, Higgs potential and confinement in Yang-Mills theory on exotic \({\mathbb{R}}^4\) (2013). arXiv:1303.1632

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Torsten Asselmeyer-Maluga .

Editor information

Editors and Affiliations

Appendix A: \(C^{*}\)—algebras Associated to Wild Embeddings

Appendix A: \(C^{*}\)—algebras Associated to Wild Embeddings

Let \(I:K^{n}\rightarrow \mathbb {R}^{n+k}\) be a wild embedding of codimension \(k\) with \(k=0,1,2\). In the following we assume that the complement \(\mathbb {R}^{n+k}\setminus I(K^{n})\) is non-trivial, i.e. \(\pi _{1}(\mathbb {R}^{n+k}\setminus I(K^{n}))=\pi \not =1\). Now one defines the \(C^{*}-\)algebra \(C^{*}(\mathcal {G},\pi )\) associated to the complement \(\mathcal {G}=\mathbb {R}^{n+k}\setminus I(K^{n})\) with group \(\pi =\pi _{1}(\mathcal {G})\). If \(\pi \) is non-trivial then this group is not finitely generated. The construction of wild embeddings is given by an infinite constructionFootnote 3 (see Antoine’s necklace or Alexanders horned sphere). From an abstract point of view, we have a decomposition of \(\mathcal {G}\) by an infinite union

$$ \mathcal {G}=\bigcup _{i=0}^{\infty }C_{i} $$

of “level sets” \(C_{i}\). Then every element \(\gamma \in \pi \) lies (up to homotopy) in a finite union of levels.

The basic elements of the \(C^{*}-\)algebra \(C^{*}(\mathcal {G},\pi )\) are smooth half-densities with compact supports on \(\mathcal {G}\), \(f\in C_{c}^{\infty }(\mathcal {G},\Omega ^{1/2})\), where \(\Omega _{\gamma }^{1/2}\) for \(\gamma \in \pi \) is the one-dimensional complex vector space of maps from the exterior power \(\Lambda ^{2}L\), of the union of levels \(L\) representing \(\gamma \), to \(\mathbb {C}\) such that

$$ \rho (\lambda \nu )=|\lambda |^{1/2}\rho (\nu )\qquad \forall \nu \in \Lambda ^{2}L,\lambda \in \mathbb {R}\,. $$

For \(f,g\in C_{c}^{\infty }(\mathcal {G},\Omega ^{1/2})\), the convolution product \(f*g\) is given by the equality

$$ (f*g)(\gamma )=\mathop {\int }_{{\gamma _{1}\circ \gamma _{2}=\gamma }}f(\gamma _{1})g(\gamma _{2}) $$

with the group operation \(\gamma _{1}\circ \gamma _{2}\) in \(\pi \). Then we define via \(f^{*}(\gamma )=\overline{f(\gamma ^{-1})}\) a \(*\)operation making \(C_{c}^{\infty }(\mathcal {G},\Omega ^{1/2})\) into a \(*\)algebra. Each level set \(C_{i}\) consists of simple pieces (for instance tubes in case of the Alexanders horned sphere) denoted by \(T\). For these pieces, one has a natural representation of \(C_{c}^{\infty }(\mathcal {G},\Omega ^{1/2})\) on the \(L^{2}\) space over \(T\). Then one defines the representation

$$ (\pi _{x}(f)\xi )(\gamma )=\mathop {\int }_{{\gamma _{1}\circ \gamma _{2}=\gamma }}f(\gamma _{1})\xi (\gamma _{2})\qquad \forall \xi \in L^{2}(T),\forall x\in \gamma . $$

The completion of \(C_{c}^{\infty }(\mathcal {G},\Omega ^{1/2})\) with respect to the norm

$$ ||f||=\sup _{x\in \mathcal {G}}||\pi _{x}(f)|| $$

makes it into a \(C^{*}\)algebra \(C_{c}^{\infty }(\mathcal {G},\pi \)). The \(C^{*}-\)algebra \(C_{c}^{\infty }(K,I)\) associated to the wild embedding \(I\) is defined to be \(C_{c}^{\infty }(K,j)=C_{c}^{\infty }(\mathcal {G},\pi )\). The GNS representation of this algebra is called the state space.

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Asselmeyer-Maluga, T. (2015). A Chicken-and-Egg Problem: Which Came First, the Quantum State or Spacetime?. In: Aguirre, A., Foster, B., Merali, Z. (eds) Questioning the Foundations of Physics. The Frontiers Collection. Springer, Cham. https://doi.org/10.1007/978-3-319-13045-3_14

Download citation

Publish with us

Policies and ethics