Skip to main content

A Quantum Algorithm for Computing Isogenies between Supersingular Elliptic Curves

Part of the Lecture Notes in Computer Science book series (LNSC,volume 8885)

Abstract

In this paper, we describe a quantum algorithm for computing an isogeny between any two supersingular elliptic curves defined over a given finite field. The complexity of our method is in \(\tilde{O}(p^{1/4})\) where \(p\) is the characteristic of the base field. Our method is an asymptotic improvement over the previous fastest known method which had complexity \(\tilde{O}(p^{1/2})\) (on both classical and quantum computers). We also discuss the cryptographic relevance of our algorithm.

Keywords

  • Elliptic curve cryptography
  • Quantum safe cryptography
  • Isogenies
  • Supersingular curves

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bosma, W., Cannon, J., Playoust, C.: The Magma algebra system. I. the user language. J. Symbolic Comput. 24(3–4), 235–265 (1997)

    CrossRef  MathSciNet  MATH  Google Scholar 

  2. Boyer, M., Brassard, G.: P. Høyer, and A. Tapp. Tight bounds on quantum searching. Fortschritte Der Physik 46, 493–505 (1998)

    CrossRef  Google Scholar 

  3. Bröker, R.: Constructing supersingular elliptic curves. J. Comb. Number Theory 1(3), 269–273 (2009)

    MathSciNet  Google Scholar 

  4. Bröker, R., Charles, D., Lauter, K.: Evaluating Large Degree Isogenies and Applications to Pairing Based Cryptography. In: Galbraith, S.D., Paterson, K.G. (eds.) Pairing 2008. LNCS, vol. 5209, pp. 100–112. Springer, Heidelberg (2008)

    CrossRef  Google Scholar 

  5. Charles, D., Lauter, K., Goren, E.: Cryptographic hash functions from expander graphs. Jornal of Cryptology 22, 93–113 (2009)

    CrossRef  MathSciNet  MATH  Google Scholar 

  6. Childs, A., Jao, D., Soukharev, V.: Constructing elliptic curve isogenies in quantum subexponential time. Journal of Mathematical Cryptology 8(1), 1–29 (2013)

    CrossRef  MathSciNet  Google Scholar 

  7. Couveignes, J.-M.: Hard homgeneous spaces. http://eprint.iacr.org/2006/291

  8. Cox, D. A.: Primes of the form \(x^2+n y^2\). John Wiley & Sons (1989)

    Google Scholar 

  9. Delfs, C., Galbraith, S.: Computing isogenies between supersingular elliptic curves over \(\mathbb{F}_p\). The Proceedings of the 11th Algorithmic Nnumber Theory Symposium (ANTS XI) (to appear)

    Google Scholar 

  10. De Feo, L., Jao, D., Plût, J.: Towards quantum-resistant cryptosystems from supersingular elliptic curve isogenies. Journal of Mathematical Cryptology (to appear, 2014). http://eprint.iacr.org/2011/506

  11. Galbraith, S.: Constructing isogenies between elliptic curves over finite fields. LMS Journal of Computation and Mathematics 2, 118–138 (1999)

    Google Scholar 

  12. Galbraith, S., Stolbunov, A.: Improved algorithm for the isogeny problem for ordinary elliptic curves. Applicable Algebra in Engineering, Communication and Computing 24(2), 107–131 (2013)

    CrossRef  MathSciNet  MATH  Google Scholar 

  13. Grover, L.: A fast quantum mechanical algorithm for database search. In: Proceedings of the Twenty-eighth Annual ACM Symposium on Theory of Computing, STOC 1996, pp. 212–219. ACM, New York (1996)

    Google Scholar 

  14. Littlewood, J.: On the class number of the corpus \(p(\sqrt{k})\). Proc. London Math. Soc. 27, 358–372 (1928)

    Google Scholar 

  15. Jao, D., De Feo, L.: Towards Quantum-Resistant Cryptosystems from Supersingular Elliptic Curve Isogenies. In: Yang, B.-Y. (ed.) PQCrypto 2011. LNCS, vol. 7071, pp. 19–34. Springer, Heidelberg (2011)

    CrossRef  Google Scholar 

  16. Jao, D., Miller, S.D., Venkatesan, R.: Expander graphs based on GRH with an application to elliptic curve cryptography. J. Number Theory 129(6), 1491–1504 (2009)

    CrossRef  MathSciNet  MATH  Google Scholar 

  17. Jao, D., Miller, S.D., Venkatesan, R.: Do All Elliptic Curves of the Same Order Have the Same Difficulty of Discrete Log? In: Roy, B. (ed.) ASIACRYPT 2005. LNCS, vol. 3788, pp. 21–40. Springer, Heidelberg (2005)

    CrossRef  Google Scholar 

  18. Jao, D., Soukharev, V.: Isogeny-Based Quantum-Resistant Undeniable Signatures. In: Mosca, M. (ed.) PQCrypto 2014. LNCS, vol. 8772, pp. 160–179. Springer, Heidelberg (2014)

    CrossRef  Google Scholar 

  19. Kuperberg, G.: A subexponential-time quantum algorithm for the dihedral hidden subgroup problem. SIAM J. Comput. 35(1), 170–188 (2005)

    CrossRef  MathSciNet  MATH  Google Scholar 

  20. MAGMA Computational Algebra System. http://magma.maths.usyd.edu.au/

  21. Regev, O.: A subexponential time algorithm for the dihedral hidden subgroup problem with polynomial space. arXiv:quant-ph/0406151

  22. Rostovtsev, A., Stolbunov, A.: Public-key cryptosystem based on isogenies. IACR Cryptology ePrint Archive 2006, 145 (2006)

    Google Scholar 

  23. Schoof, R.: Counting points on elliptic curves over finite fields. Journal de théorie des nombres de Bordeaux 7, 219–254 (1995)

    CrossRef  MathSciNet  MATH  Google Scholar 

  24. Seiichiro, T.: Claw finding algorithms using quantum walk. Theoretical Computer Science 410(50), 5285–5297 (2009), Mathematical Foundations of Computer Science (MFCS 2007)

    Google Scholar 

  25. Silverman, J.: The arithmetic of elliptic curves, vol. 106. Graduate texts in Mathematics. Springer (1992)

    Google Scholar 

  26. Stolbunov, A.: Constructing public-key cryptographic schemes based on class group action on a set of isogenous elliptic curves. Adv. in Math. of Comm. 4(2), 215–235 (2010)

    CrossRef  MathSciNet  MATH  Google Scholar 

  27. Sutherland, A.: smoothrelation. http://math.mit.edu/~drew/smooth_relation_v1.2.tar.

  28. Tate, J.: Endomoprhisms of abelian varieties over finite fields. Inventiones Mathematica 2, 134–144 (1966)

    CrossRef  MathSciNet  MATH  Google Scholar 

  29. Vélu, J.: Isogénies entre courbes elliptiques. C. R. Acad. Sci. Paris Sér. A-B, 273, A238–A241 (1971)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David Jao .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Biasse, JF., Jao, D., Sankar, A. (2014). A Quantum Algorithm for Computing Isogenies between Supersingular Elliptic Curves. In: Meier, W., Mukhopadhyay, D. (eds) Progress in Cryptology -- INDOCRYPT 2014. INDOCRYPT 2014. Lecture Notes in Computer Science(), vol 8885. Springer, Cham. https://doi.org/10.1007/978-3-319-13039-2_25

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-13039-2_25

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-13038-5

  • Online ISBN: 978-3-319-13039-2

  • eBook Packages: Computer ScienceComputer Science (R0)