Skip to main content

Summation Polynomial Algorithms for Elliptic Curves in Characteristic Two

Part of the Lecture Notes in Computer Science book series (LNSC,volume 8885)

Abstract

The paper is about the discrete logarithm problem for elliptic curves over characteristic 2 finite fields \({\mathbb {F}}_{2^n}\) of prime degree \(n\). We consider practical issues about index calculus attacks using summation polynomials in this setting. The contributions of the paper include: a new choice of variables for binary Edwards curves (invariant under the action of a relatively large group) to lower the degree of the summation polynomials; a choice of factor base that “breaks symmetry” and increases the probability of finding a relation; an experimental investigation of the use of SAT solvers rather than Gröbner basis methods for solving multivariate polynomial equations over \({\mathbb {F}}_2\).

We show that our new choice of variables gives a significant improvement to previous work in this case. The symmetry-breaking factor base and use of SAT solvers seem to give some benefits in practice, but our experimental results are not conclusive. Our work indicates that Pollard rho is still much faster than index calculus algorithms for the ECDLP over prime extension fields \({\mathbb {F}}_{2^n}\) of reasonable size.

Keywords

  • ECDLP
  • Summation polynomials
  • Index calculus

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bernstein, D.J., Lange, T., Rezaeian Farashahi, R.: Binary Edwards Curves. In: Oswald, E., Rohatgi, P. (eds.) CHES 2008. LNCS, vol. 5154, pp. 244–265. Springer, Heidelberg (2008)

    CrossRef  Google Scholar 

  2. Bettale, L., Faugère, J.-C., Perret, L.: Hybrid approach for solving multivariate systems over finite fields. J. Math. Crypt. 3, 177–197 (2009)

    MATH  Google Scholar 

  3. Courtois, N.T., Bard, G.V.: Algebraic Cryptanalysis of the Data Encryption Standard. In: Galbraith, S.D. (ed.) Cryptography and Coding 2007. LNCS, vol. 4887, pp. 152–169. Springer, Heidelberg (2007)

    CrossRef  Google Scholar 

  4. Diem, C.: On the discrete logarithm problem in elliptic curves over non-prime finite fields. In: Lecture at ECC 2004 (2004)

    Google Scholar 

  5. Diem, C.: On the discrete logarithm problem in class groups of curves. Mathematics of Computation 80, 443–475 (2011)

    CrossRef  MathSciNet  MATH  Google Scholar 

  6. Diem, C.: On the discrete logarithm problem in elliptic curves. Composition Math. 147(1), 75–104 (2011)

    CrossRef  MathSciNet  MATH  Google Scholar 

  7. Diem, C.: On the discrete logarithm problem in elliptic curves II. Algebra and Number Theory 7(6), 1281–1323 (2013)

    CrossRef  MathSciNet  MATH  Google Scholar 

  8. Faugère, J.-C., Perret, L., Petit, C., Renault, G.: Improving the Complexity of Index Calculus Algorithms in Elliptic Curves over Binary Fields. In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237, pp. 27–44. Springer, Heidelberg (2012)

    CrossRef  Google Scholar 

  9. Faugère, J.-C., Gaudry, P., Huot, L., Renault, G.: Using Symmetries in the Index Calculus for Elliptic Curves Discrete Logarithm. Journal of Cryptology (to appear, 2014)

    Google Scholar 

  10. Faugère, J.-C., Huot, L., Joux, A., Renault, G., Vitse, V.: Symmetrized Summation Polynomials: Using Small Order Torsion Points to Speed Up Elliptic Curve Index Calculus. In: Nguyen, P.Q., Oswald, E. (eds.) EUROCRYPT 2014. LNCS, vol. 8441, pp. 40–57. Springer, Heidelberg (2014)

    CrossRef  Google Scholar 

  11. Faugère, J.-C., Gianni, P., Lazard, D., Mora, T.: Efficient Computation of zero-dimensional Gröbner bases by change of ordering. Journal of Symbolic Computation 16(4), 329–344 (1993)

    CrossRef  MathSciNet  MATH  Google Scholar 

  12. Gaudry, P., Hess, F., Smart, N.P.: Constructive and destructive facets of Weil descent on elliptic curves. J. Crypt. 15(1), 19–46 (2002)

    CrossRef  MathSciNet  Google Scholar 

  13. Gaudry, P.: Index calculus for abelian varieties of small dimension and the elliptic curve discrete logarithm problem. Journal of Symbolic Computation 44(12), 1690–1702 (2009)

    CrossRef  MathSciNet  MATH  Google Scholar 

  14. Gomes, C.P., Selman, B., Kautz, H.: Boosting combinatorial search through randomization. In: Mostow, J., Rich, C. (eds.) Proceedings AAAI 1998, pp. 431–437. AAAI (1998)

    Google Scholar 

  15. Huang, Y.-J., Petit, C., Shinohara, N., Takagi, T.: Improvement of Faugère et al.’s Method to Solve ECDLP. In: Sakiyama, K., Terada, M. (eds.) IWSEC 2013. LNCS, vol. 8231, pp. 115–132. Springer, Heidelberg (2013)

    CrossRef  Google Scholar 

  16. Joux, A., Vitse, V.: Cover and Decomposition Index Calculus on Elliptic Curves Made Practical. In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237, pp. 9–26. Springer, Heidelberg (2012)

    CrossRef  Google Scholar 

  17. McDonald, C., Charnes, C., Pieprzyk, J.: Attacking Bivium with MiniSat, ECRYPT Stream Cipher Project, Report 2007/040 (2007)

    Google Scholar 

  18. Petit, C., Quisquater, J.-J.: On Polynomial Systems Arising from a Weil Descent. In: Wang, X., Sako, K. (eds.) ASIACRYPT 2012. LNCS, vol. 7658, pp. 451–466. Springer, Heidelberg (2012)

    CrossRef  Google Scholar 

  19. Shantz, M., Teske, E.: Solving the Elliptic Curve Discrete Logarithm Problem Using Semaev Polynomials, Weil Descent and Gröbner Basis Methods – An Experimental Study. In: Fischlin, M., Katzenbeisser, S. (eds.) Buchmann Festschrift. LNCS, vol. 8260, pp. 94–107. Springer, Heidelberg (2013)

    Google Scholar 

  20. Semaev, I.: Summation polynomials and the discrete logarithm problem on elliptic curves, Cryptology ePrint Archive, Report 2004/031 (2004)

    Google Scholar 

  21. Sörensson, N., Eén, N.: Minisat 2.1 and Minisat++ 1.0 SAT race 2008 editions, SAT, pp. 31–32 (2008)

    Google Scholar 

  22. Yang, B.-Y., Chen, J.-M.: Theoretical analysis of XL over small fields. In: Wang, H., Pieprzyk, J., Varadharajan, V. (eds.) ACISP 2004. LNCS, vol. 3108, pp. 277–288. Springer, Heidelberg (2004)

    CrossRef  Google Scholar 

  23. Yang, B.-Y., Chen, J.-M., Courtois, N.: On asymptotic security estimates in XL and Gröbner bases-related algebraic cryptanalysis. In: Lopez, J., Qing, S., Okamoto, E. (eds.) ICICS 2004. LNCS, vol. 3269, pp. 401–413. Springer, Heidelberg (2004)

    CrossRef  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Steven D. Galbraith .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Galbraith, S.D., Gebregiyorgis, S.W. (2014). Summation Polynomial Algorithms for Elliptic Curves in Characteristic Two. In: Meier, W., Mukhopadhyay, D. (eds) Progress in Cryptology -- INDOCRYPT 2014. INDOCRYPT 2014. Lecture Notes in Computer Science(), vol 8885. Springer, Cham. https://doi.org/10.1007/978-3-319-13039-2_24

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-13039-2_24

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-13038-5

  • Online ISBN: 978-3-319-13039-2

  • eBook Packages: Computer ScienceComputer Science (R0)