Skip to main content

Part of the book series: Springer Theses ((Springer Theses))

  • 564 Accesses

Abstract

The demands on materials increase rapidly. To meet these demands, more and more complex microstructures and microstructural architectures are used. However, currently used strategies to develop increasingly complex structures are unsuited to create tomorrow’s materials. For example, the main challenge in determining micro structure–property relationships is that any kind of individual variation in feature properties inevitably changes other properties. This is due to the fabrication methods, which do not permit completely independently vary just one microstructure feature. As an example, if one attempts to alter, for instance, the spacing of a phase in a microstructure, at the same time, length, volume, composition, dispersity, and density of this phase will also change because all the properties are interconnected. This contribution consists of an in-depth study of investigating microstructure-property relationships in bulk metallic glasses using a novel quantitative approach by which influence of the second phase features on mechanical properties can be independently and systematically analyzed. We adopted this strategy to evaluate and optimize the elastic and plastic deformation, as well as the overall toughness of cellular honeycombs under in-plane compression and porous heterostructures under uniaxial tension.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Schwarz M, Karma A, Eckler K, Herlach DM. Physical-Mechanism of Grain-Refinement in Solidification of Undercooled Melts. Phys Rev Lett. 1994;73:2940.

    Article  Google Scholar 

  2. Schroers J, HollandMoritz D, Herlach DM, Grushko B, Urban K. Undercooling and solidification behaviour of a metastable decagonal quasicrystalline phase and crystalline phases in Al-Co. Mat Sci Eng a-Struct. 1997;226:990.

    Google Scholar 

  3. Falk ML, Langer JS, Pechenik L. Thermal effects in the shear-transformation-zone theory of amorphous plasticity: comparisons to metallic glass data. Phys Rev E. 2004;70:011507–1.

    Article  Google Scholar 

  4. Yamakov V, Wolf D, Salazar M, Phillpot SR, Gleiter H. Length-scale effects in the nucleation of extended dislocations in nanocrystalline Al by molecular-dynamics simulation. Acta Mater. 2001;49:2713.

    Article  Google Scholar 

  5. Yamakov V, Wolf D, Phillpot SR, Gleiter H. Grain-boundary diffusion creep in nanocrystalline palladium by molecular-dynamics simulation. Acta Mater. 2002;50:61.

    Article  Google Scholar 

  6. Lund AC, Schuh CA. Strength asymmetry in nanocrystalline metals under multiaxial loading. Acta Mater. 2005;53:3193.

    Article  Google Scholar 

  7. Li QK, Li M. Free volume evolution in metallic glasses subjected to mechanical deformation. Mater Trans. 2007;48:1816.

    Article  Google Scholar 

  8. Hood RQ, Galli G. Insulator to metal transition in fluid deuterium. J Chem Phys. 2004;120:5691.

    Article  Google Scholar 

  9. Torquato S, Stillinger FH. Jammed hard-particle packings: from Kepler to Bernal and beyond. Rev Mod Phys. 2010;82:2633.

    Article  Google Scholar 

  10. Song C, Wang P, Makse HA. A phase diagram for jammed matter. Nature. 2008;453:629.

    Article  Google Scholar 

  11. Bernal JD, Finney JL. Random close-packed hard-sphere model. 2. Geometry of random packing of hard spheres. Discuss Faraday Soc. 1967;43:62.

    Article  Google Scholar 

  12. 12. Bernal JD. Geometry of the structure of monatomic liquids. Nature. 1960;185:68.

    Article  Google Scholar 

  13. Bernal JD, Mason J. Co-ordination of randomly packed spheres. Nature. 1960;188:910.

    Article  Google Scholar 

  14. Pusey PN, Vanmegen W. Phase-behavior of concentrated suspensions of nearly hard colloidal spheres. Nature. 1986;320:340.

    Article  Google Scholar 

  15. 15. Vanblaaderen A, Wiltzius P. Real-space structure of colloidal hard-sphere glasses. Science. 1995;270:1177.

    Google Scholar 

  16. Royall CP, Poon WCK, Weeks ER. In search of colloidal hard spheres. Soft Matter. 2013;9:17.

    Article  Google Scholar 

  17. Pusey PN, Zaccarelli E, Valeriani C, Sanz E, Poon WCK, Cates ME. Hard spheres: crystallization and glass formation. Philos T R Soc A. 2009;367:4993.

    Article  Google Scholar 

  18. Schall P, Weitz DA, Spaepen F. Structural rearrangements that govern flow in colloidal glasses. Science. 2007;318:1895.

    Article  Google Scholar 

  19. Schroers J. Bulk metallic glasses. Phys Today. 2013;66:32.

    Article  Google Scholar 

  20. Chen MW. A brief overview of bulk metallic glasses. Npg Asia Mater. 2011;3:82.

    Article  Google Scholar 

  21. Wang WH, Dong C, Shek CH. Bulk metallic glasses. Mat Sci Eng R. 2004;44:45.

    Article  Google Scholar 

  22. Telford M. The case for bulk metallic glass. Mater. Today March. 2004;7:36.

    Article  Google Scholar 

  23. Greer AL. Metallic glasses … on the threshold. Mater Today. 2009;12:14.

    Article  Google Scholar 

  24. Schroers J. The superplastic forming of bulk metallic glasses. Jom-Us. 2005;57:35.

    Google Scholar 

  25. Kumar G, Tang HX, Schroers J. Nanomoulding with amorphous metals. Nature. 2009;457:868.

    Article  Google Scholar 

  26. Kumar G, Desai A, Schroers J. Bulk metallic glass: the smaller the better. Adv Mater. 2011;23:461.

    Article  Google Scholar 

  27. Schroers J. On the formability of bulk metallic glass in its supercooled liquid state. Acta Mater. 2008;56:471.

    Article  Google Scholar 

  28. Sarac B, Kumar G, Hodges T, Ding SY, Desai A, Schroers J. Three-dimensional shell fabrication using blow molding of bulk metallic glass. J Microelectromech S. 2011;20:28.

    Article  Google Scholar 

  29. Schroers J, Pham Q, Desai A. Thermoplastic forming of bulk metallic glass—a technology for MEMS and microstructure fabrication. J Microelectromech S. 2007;16:240.

    Article  Google Scholar 

  30. Sarac B, Ketkaew J, Popnoe DO, Schroers J. Honeycomb structures of bulk metallic glasses. Adv Funct Mater. 2012;22:3161.

    Article  Google Scholar 

  31. Sarac B, Schroers J. From brittle to ductile: density optimization for Zr-BMG cellular structures. Scripta Mater. 2013;68:921.

    Article  Google Scholar 

  32. Conner RD, Johnson WL, Paton NE, Nix WD. Shear bands and cracking of metallic glass plates in bending. J Appl Phys. 2003;94:904.

    Article  Google Scholar 

  33. Wada T, Inoue A, Greer AL. Enhancement of room-temperature plasticity in a bulk metallic glass by finely dispersed porosity. Appl Phys Lett. 2005;86:251907–1.

    Article  Google Scholar 

  34. Hofmann DC, Suh JY, Wiest A, Duan G, Lind ML, Demetriou MD, Johnson WL. Designing metallic glass matrix composites with high toughness and tensile ductility. Nature. 2008;451:1085.

    Article  Google Scholar 

  35. Volkert CA, Donohue A, Spaepen F. Effect of sample size on deformation in amorphous metals. J Appl Phys. 2008;103:083539–1.

    Article  Google Scholar 

  36. Sarac B, Schroers J. Designing tensile ductility in metallic glasses. Designing tensile ductility in metallic glasses. Nat Commun. 2013;4:2158–1.

    Article  Google Scholar 

  37. Johnson WL. Bulk glass-forming metallic alloys: science and technology. Mrs Bull. 1999;24:42.

    Article  Google Scholar 

  38. Demetriou MD, Launey ME, Garrett G, Schramm JP, Hofmann DC, Johnson WL, Ritchie RO. A damage-tolerant glass. Nat Mater. 2011;10:123.

    Article  Google Scholar 

  39. Schroers J. Processing of bulk metallic glass. Adv Mater. 2010;22:1566.

    Article  Google Scholar 

  40. Schroers J, Pham Q, Peker A, Paton N, Curtis RV. Blow molding of bulk metallic glass. Scripta Mater. 2007;57:341.

    Article  Google Scholar 

  41. Martinez R, Kumar G, Schroers J. Hot rolling of bulk metallic glass in its supercooled liquid region. Scripta Mater. 2008;59:187.

    Article  Google Scholar 

  42. Schroers J, Paton N. Amorphous metal alloys form like plastics. Adv Mater Process. 2006;164:61.

    Google Scholar 

  43. Saotome Y, Itoh K, Zhang T, Inoue A. Superplastic nanoforming of Pd-based amorphous alloy. Scripta Mater. 2001;44:1541.

    Article  Google Scholar 

  44. Sharma P, Kaushik N, Kimura H, Saotome Y, Inoue A. Nano-fabrication with metallic glass—an exotic material for nano-electromechanical systems. Nanotechnology. 2007;18:035302–1.

    Article  Google Scholar 

  45. Chu JP, Wijaya H, Wu CW, Tsai TR, Wei CS, Nieh TG, Wadsworth J. Nanoimprint of gratings on a bulk metallic glass. Appl Phys Lett. 2007;90:034101–1.

    Article  Google Scholar 

  46. Kumar G, Schroers J. Write and erase mechanisms for bulk metallic glass. Appl Phys Lett. 2008;92:031901–1.

    Article  Google Scholar 

  47. Pan CT, Wu TT, Chang YC, Huang JC. Experiment and simulation of hot embossing of a bulk metallic glass with low pressure and temperature. J Micromech Microeng. 2008;18:025010–1.

    Article  Google Scholar 

  48. Inoue A, Nishiyama N. New bulk metallic glasses for applications as magnetic-sensing, chemical, and structural materials. Mrs Bull. 2007;32:651.

    Article  Google Scholar 

  49. Henann DL, Srivastava V, Taylor HK, Hale MR, Hardt DE, Anand L. Metallic glasses: viable tool materials for the production of surface microstructures in amorphous polymers by micro-hot-embossing. J Micromech Microeng. 2009;19:115030–1.

    Article  Google Scholar 

  50. Ashby MF, Greer AL. Metallic glasses as structural materials. Scripta Mater. 2006;54:321.

    Article  Google Scholar 

  51. Busch R, Schroers J, Wang WH. Thermodynamics and kinetics of bulk metallic glass. Mrs Bull. 2007;32:620.

    Article  Google Scholar 

  52. Kumar G, Neibecker P, Liu YH, Schroers J. Critical fictive temperature for plasticity in metallic glasses. Nat Commun. 2013;4:1536–1.

    Article  Google Scholar 

  53. Kumar G, Rector D, Conner RD, Schroers J. Embrittlement of Zr-based bulk metallic glasses. Acta Mater. 2009;57:3572.

    Article  Google Scholar 

  54. Schroers J, Lohwongwatana B, Johnson WL, Peker A. Gold based bulk metallic glass. Appl Phys Lett 2005;87:061912–1.

    Article  Google Scholar 

  55. Zhang B, Zhao DQ, Pan MX, Wang WH, Greer AL. Amorphous metallic plastic. Phys Rev Lett. 2005;94:205502–1.

    Article  Google Scholar 

  56. Legg BA, Schroers J, Busch R. Thermodynamics, kinetics, and crystallization of Pt57.3Cu14.6Ni5.3P22.8 bulk metallic glass. Acta Mater. 2007;55:1109.

    Article  Google Scholar 

  57. Duan G, Wiest A, Lind ML, Li J, Rhim WK, Johnson WL. Bulk metallic glass with benchmark thermoplastic processability. Adv Mater. 2007;19:4272.

    Article  Google Scholar 

  58. Schroers J, Johnson WL. Highly processable bulk metallic glass-forming alloys in the Pt-Co-Ni-Cu-P system. Appl Phys Lett. 2004;84:3666.

    Article  Google Scholar 

  59. Schroers J, Hodges TM, Kumar G, Raman H, Barnes AJ, Quoc P, Waniuk TA. Thermoplastic blow molding of metals. Mater Today. 2011;14:14.

    Article  Google Scholar 

  60. Carmo M, Sekol RC, Ding SY, Kumar G, Schroers J, Taylor AD. Bulk metallic glass nanowire architecture for electrochemical applications. Acs Nano. 2011;5:2979.

    Article  Google Scholar 

  61. Xing LQ, Li Y, Ramesh KT, Li J, Hufnagel TC. Enhanced plastic strain in Zr-based bulk amorphous alloys. Phys Rev B. 2001;64:180201–1.

    Article  Google Scholar 

  62. Schroers J, Johnson WL. Ductile bulk metallic glass. Phys Rev Lett. 2004;93:255506–1.

    Article  Google Scholar 

  63. Das J, Tang MB, Kim KB, Theissmann R, Baier F, Wang WH, Eckert J. “Work-hardenable” ductile bulk metallic glass. Phys Rev Lett. 2005;94:205501–1.

    Article  Google Scholar 

  64. Liu YH, Wang G, Wang RJ, Zhao DQ, Pan MX, Wang WH. Super plastic bulk metallic glasses at room temperature. Science. 2007;315:1385.

    Article  Google Scholar 

  65. Lewandowski JJ, Wang WH, Greer AL. Intrinsic plasticity or brittleness of metallic glasses. Phil Mag Lett. 2005;85:77.

    Article  Google Scholar 

  66. Schuh CA, Hufnagel TC, Ramamurty U. Overview No.144—mechanical behavior of amorphous alloys. Acta Mater. 2007;55:4067.

    Article  Google Scholar 

  67. Schuh CA, Lund AC, Nieh TG. New regime of homogeneous flow in the deformation map of metallic glasses: elevated temperature nanoindentation experiments and mechanistic modeling. experiments Acta Mater. 2004;52:5879.

    Article  Google Scholar 

  68. Guo H, Yan PF, Wang YB, Tan J, Zhang ZF, Sui ML, Ma E. Tensile ductility and necking of metallic glass. Nat Mater. 2007;6:735.

    Article  Google Scholar 

  69. Spaepen F. Microscopic mechanism for steady-state inhomogeneous flow in metallic glasses. Acta Metallurgica. 1977;25:407.

    Article  Google Scholar 

  70. Bharathula A, Lee SW, Wright WJ, Flores KM. Compression testing of metallic glass at small length scales: effects on deformation mode and stability. Acta Mater. 2010;58:5789.

    Article  Google Scholar 

  71. Inoue A, Zhang W, Tsurui T, Yavari AR, Greer AL. Unusual room-temperature compressive plasticity in nanocrystal-toughened bulk copper-zirconium glass. Phil Mag Lett. 2005;85:221.

    Article  Google Scholar 

  72. Hays CC, Kim CP, Johnson WL. Microstructure controlled shear band pattern formation and enhanced plasticity of bulk metallic glasses containing in situ formed ductile phase dendrite dispersions. Phys Rev Lett. 2000;84:2901.

    Article  Google Scholar 

  73. Fan C, Ott RT, Hufnagel TC. Metallic glass matrix composite with precipitated ductile reinforcement. Appl Phys Lett. 2002;81:1020.

    Article  Google Scholar 

  74. Kuhn U, Eckert J, Mattern N, Schultz L. ZrNbCuNiAl bulk metallic glass matrix composites containing dendritic bcc phase precipitates. Appl Phys Lett. 2002;80:2478.

    Article  Google Scholar 

  75. Louzguine DV, Kato H, Inoue A. High-strength Cu-based crystal-glassy composite with enhanced ductility. Appl Phys Lett. 2004;84:1088.

    Article  Google Scholar 

  76. Kundig AA, Ohnuma M, Ping DH, Ohkubo T, Hono K. In situ formed two-phase metallic glass with surface fractal microstructure. Acta Mater. 2004;52:2441.

    Article  Google Scholar 

  77. Choi-Yim H, Johnson WL. Bulk metallic glass matrix composites. Appl Phys Lett. 1997;71:3808.

    Article  Google Scholar 

  78. Szuecs F, Kim CP, Johnson WL. Title: Mechanical properties of Zr56.2Ti13.8Nb5.0Cu6.9Ni5.6Be12.5 ductile phase reinforced bulk metallic glass composite. Acta Mater. 2001;49:1507.

    Article  Google Scholar 

  79. Siegrist ME, Loffler JF. Bulk metallic glass-graphite composites. Scripta Mater. 2007;56:1079.

    Article  Google Scholar 

  80. Schroers J, Veazey C, Johnson WL. Amorphous metallic foam. Appl Phys Lett. 2003;82:370.

    Article  Google Scholar 

  81. Wada T, Inoue A. Formation of porous Pd-based bulk glassy alloys by a high hydrogen pressure melting-water quenching method and their mechanical properties. Mater Trans. 2004;45:2761.

    Article  Google Scholar 

  82. Schroers J, Veazey C, Demetriou MD, Johnson WL. Synthesis method for amorphous metallic foam. J Appl Phys. 2004;96:7723.

    Article  Google Scholar 

  83. Brothers AH, Dunand DC. Porous and foamed amorphous metals. Mrs Bull. 2007;32:639.

    Article  Google Scholar 

  84. Brothers AH, Dunand DC. Ductile bulk metallic glass foams. Adv Mater. 2005;17:484.

    Article  Google Scholar 

  85. Siegrist ME. Bulk metallic glass composites. Doctoral Thesis. 2007.

    Google Scholar 

  86. Hess PA, Poon SJ, Shiflet GJ, Dauskardt RH. Indentation fracture toughness of amorphous steel. J Mater Res. 2005;20:783.

    Article  Google Scholar 

  87. Gilbert CJ, Ritchie RO, Johnson WL. Fracture toughness and fatigue-crack propagation in a Zr-Ti-Ni-Cu-Be bulk metallic glass. Appl Phys Lett. 1997;71:476.

    Article  Google Scholar 

  88. Xing LQ, Herlach DM, Cornet M, Bertrand C, Dallas JP, Trichet MF, Chevalier JP. Mechanical properties of Zr57Ti5Al10Cu20Ni8 amorphous and partially nanocrystallized alloys. Mat Sci Eng a-Struct. 1997;226:874.

    Google Scholar 

  89. Xing LQ, Eckert J, Schultz L. Deformation mechanism of amorphous and partially crystallized alloys. Nanostruct Mater. 1999;12:503.

    Article  Google Scholar 

  90. Conner RD, Dandliker RB, Scruggs V, Johnson WL. Dynamic deformation behavior of tungsten-fiber/metallic-glass matrix composites. Int J Impact Eng. 2000;24:435.

    Article  Google Scholar 

  91. Fan C, Inoue A. Ductility of bulk nanocrystalline composites and metallic glasses at room temperature. Appl Phys Lett. 2000;77:46.

    Article  Google Scholar 

  92. Sordelet DJ, Rozhkova E, Huang P, Wheelock PB, Besser MF, Kramer MJ, Calvo-Dahlborg M, Dahlborg U. Synthesis of Cu47Ti34Zr11Ni8 bulk metallic glass by warm extrusion of gas atomized powders. J Mater Res. 2002;17:186.

    Article  Google Scholar 

  93. Bae DH, Lee MH, Kim DH, Sordelet DJ. Plasticity in Ni59Zr20Ti16Si2Sn3 metallic glass matrix composites containing brass fibers synthesized by warm extrusion of powders. Appl Phys Lett. 2003;83:2312.

    Article  Google Scholar 

  94. Schroers J, Nguyen T, Croopnick GA. A novel metallic glass composite synthesis method. Scripta Mater. 2007;56:177.

    Article  Google Scholar 

  95. Schroers J, Samwer K, Szuecs F, Johnson WL. Characterization of the interface between the bulk glass forming alloy Zr41Ti14Cu12Ni10Be23 with pure metals and ceramics. J Mater Res. 2000;15:1617.

    Article  Google Scholar 

  96. Ma H, Xu J, Ma E. Mg-based bulk metallic glass composites with plasticity and high strength. Appl Phys Lett. 2003;83:2793.

    Article  Google Scholar 

  97. Launey ME, Hofmann DC, Suh JY, Kozachkov H, Johnson WL, Ritchie RO. Fracture toughness and crack-resistance curve behavior in metallic glass-matrix composites. Appl Phys Lett. 2009;94:241910–1.

    Article  Google Scholar 

  98. He G, Eckert J, Loser W, Schultz L. Novel Ti-base nanostructure-dendrite composite with enhanced plasticity. Nat Mater. 2003;2:33.

    Article  Google Scholar 

  99. He G, Eckert J, Loser W, Hagiwara M. Composition dependence of the microstructure and the mechanical properties of nano/ultrafine-structured Ti-Cu-Ni-Sn-Nb alloys. Acta Mater. 2004;52:3035.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Baran Sarac .

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Sarac, B. (2015). General Introduction. In: Microstructure-Property Optimization in Metallic Glasses. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-319-13033-0_1

Download citation

Publish with us

Policies and ethics