Skip to main content

Many-Electron Atoms

  • 1186 Accesses

Part of the Lecture Notes in Physics book series (LNP,volume 894)

Abstract

The essential achievements in modern quantum theory are closely connected to the microscopic description of many-electron systems in quantum chemistry, biology and condensed matter physics by using density functional theory (DFT), introduced in pioneering works [1, 2]. This approach is used as a basis for ab initio calculations for complex molecular systems and the details of the method are presented in numerous monographs and reviews [3–6].

Keywords

  • Wave Function
  • Universal Function
  • Laguerre Polynomial
  • Zeroth Approximation
  • Atomic Characteristic

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-319-13006-4_8
  • Chapter length: 43 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   69.99
Price excludes VAT (USA)
  • ISBN: 978-3-319-13006-4
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   89.99
Price excludes VAT (USA)
Fig. 8.1
Fig. 8.2
Fig. 8.3
Fig. 8.4
Fig. 8.5
Fig. 8.6
Fig. 8.7
Fig. 8.8

References

  1. P. Hohenberg, W. Kohn, Phys. Rev. 136, B864 (1964)

    CrossRef  ADS  MathSciNet  Google Scholar 

  2. W. Kohn, L.J. Sham, Phys. Rev. 140, A1133 (1965)

    CrossRef  ADS  MathSciNet  Google Scholar 

  3. W. Kohn, Rev. Mod. Phys. 71, 1253 (1998)

    CrossRef  ADS  Google Scholar 

  4. R.O. Jones, O. Gunnarsson, Rev. Mod. Phys. 61, 689 (1989)

    CrossRef  ADS  Google Scholar 

  5. R. Parr, W. Yang, Density-Functional Theory of Atoms and Molecules (Oxford University Press, New York, 1989)

    Google Scholar 

  6. W. Koch, M.C. Holthausen, A Chemist’s Guide to Density Functional Theory (Wiley, New York, 2001)

    CrossRef  Google Scholar 

  7. B.-G. Englert, Semiclassical Theory of Atoms (Springer, Berlin, 1988)

    Google Scholar 

  8. I.K. Dmitrieva, G.I. Plindov, Characteristics of Atoms and Ions in the Light of Statistical Theory (in Russian) (Nauka and Tekhnika, Minsk, 1991)

    Google Scholar 

  9. L.D. Landau, E.M. Lifshitz, Quantum Mechanics (Fizmatgiz, Moscow, 2004)

    Google Scholar 

  10. A. Messiah, Quantum Mechanics (North-Holland, Amsterdam, 1976)

    Google Scholar 

  11. J.C. Slater, Quantum Theory of Atomic Structure (McGraw-Hill, New York, 1960)

    MATH  Google Scholar 

  12. C.F. Fischer, The Hartree-Fock Method for Atoms. Numerical Approach (Wiley, New York, 1977)

    Google Scholar 

  13. A. Szabo, N.S. Ostlund, Modern Quantum Chemistry: Introduction to Advanced Electronic Structure Theory (McGraw-Hill, New York, 1989)

    Google Scholar 

  14. I.D. Feranchuk, L.I. Gurskii, L.I. Komarov, O.M. Lugovskaya, F. Burgäzy, A.P. Ulyanenkov, Acta Crystallogr. A 58, 370 (2002)

    CrossRef  Google Scholar 

  15. I.D. Feranchuk, V.V. Triguk, J. Appl. Spectrosc. 77, 749 (2011)

    CrossRef  ADS  Google Scholar 

  16. I.S. Gradshtein, I.M. Ryzhik, Tables of Integrals, Sums, Series and Products (Fizmatgiz, Moscow, 1963)

    Google Scholar 

  17. I.D. Feranchuk, A.V. Leonov, Phys. Lett. A 375, 385 (2011)

    CrossRef  ADS  MATH  Google Scholar 

  18. O.J. Heilmann, E.H. Lieb, Phys. Rev. A 82, 3628 (1995)

    CrossRef  ADS  Google Scholar 

  19. J.C. Slater, Quantum Theory of Molecules and Solids (McGraw-Hill, New York, 1965)

    MATH  Google Scholar 

  20. P.A.M. Dirac, Proc. Camb. Philos. Soc. 26, 376 (1930)

    CrossRef  ADS  MATH  Google Scholar 

  21. P.M. Morse, H. Feshbach, Methods of Theoretical Physics (McGraw-Hill, New York, 1953)

    MATH  Google Scholar 

  22. P.A. Khomyakov, Development and Application of the Operator Method for Quantum Systems with many Degrees of Freedom (in Russian), PhD Thesis, Belarusian University 2001

    Google Scholar 

  23. L.I. Komarov, P.A. Khomyakov, Nonlinear Phenom. Complex Syst. 4, 341 (2001)

    Google Scholar 

  24. A. Benediktovitch, I. Feranchuk, A. Ulyanenkov, Theoretical Concepts of X-Ray Nanoscale Analysis (Springer, Heidelberg, 2014)

    CrossRef  MATH  Google Scholar 

  25. I. Clementi, D. Raimondi, J. Chem. Phys. 38, 2686 (1963)

    CrossRef  ADS  Google Scholar 

  26. I. Clementi, C. Roetti, At. Data Nucl. Data Tables 14, 177 (1974)

    CrossRef  ADS  Google Scholar 

  27. R.E. Stewart, J. Chem. Phys. 50, 2485 (1969)

    CrossRef  ADS  Google Scholar 

  28. M.G. Veselov, L.N. Labzovskii, The Theory of Atoms: Structure of Atomic Shells (in Russian) (Nauka, Moscow, 1986)

    Google Scholar 

  29. M. Kregar, Phys. Scr. 29, 438 (1984)

    CrossRef  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and Permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Feranchuk, I., Ivanov, A., Le, VH., Ulyanenkov, A. (2015). Many-Electron Atoms. In: Non-perturbative Description of Quantum Systems. Lecture Notes in Physics, vol 894. Springer, Cham. https://doi.org/10.1007/978-3-319-13006-4_8

Download citation