Abstract
A two-dimensional exciton in a magnetic field has been of great interest to both theoretical and experimental researchers for many years [1–3] and continues to be after several new and interesting physical effects discovered in recent years [4–7]. The energy spectrum and wave function of exciton in magnetic field, therefore, need to be calculated with increasing precision. Since the 1990s, the perturbation method, the variational method and some other numerical methods have been employed to calculate the energy of this system in weak and strong magnetic fields [1, 3].
Keywords
- Wave Function
- Magnetic Field Strength
- Operator Method
- Strong Magnetic Field
- Decimal Place
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
This is a preview of subscription content, access via your institution.
Buying options





References
W. Edelstein, Phys. Rev. B 39, 7697 (1989)
A.H. MacDonald, D.S. Ritchie, Phys. Rev. B 33, 8336 (1986)
J.-L. Zhu, Y. Cheng, J.-J. Xiong, Phys. Rev. B 41, 10792 (1990)
G.V. Astakhov, D.R. Yakovlev, V.V. Rudenkov, P.C.H. Christianen, T. Barrick, S.A. Gooker, A.B. Dzyubenko, W. Ossau, J.C. Maan, G. Karczewshi, T. Wojtowicz, Phys. Rev. B 71, 201312 (2005)
A. Bruno-Alfonso, L. Candido, G.Q. Haiz, J. Phys. Condens. Matter 22, 125801 (2010)
A. Poszwa, Phys. Scr. 84, 055002 (2011)
D. Nandi, A.D.K. Finck, J.P. Eisenstein, L.N. Pfeiffer, K.W. West, Nature 488, 481 (2012)
V.M. Villalba, R. Pino, Physica B 315, 289 (2002)
A. Soylu, I. Boztosun, Physica E 40, 443 (2008)
T. Levi-Civita, Acta Math. 30, 305 (1906)
V.-H. Le, T.-G. Nguyen, J. Phys. A Math. Gen. 26, 1409 (1993)
J. Zhu, S.L. Ban, S.H. Ha, Phys. Stat. Sol. B 248, 384 (2011)
F. Milota, J. Sperling, A. Nemeth, T. Mancal, H.F. Kauffmann, Acc. Chem. Res. 42, 1364 (2009)
N.-T. Hoang-Do, D.-L. Pham, V.-H. Le, Physica B 423, 31 (2013)
N.-T. Hoang-Do, V.-H. Hoang, V.-H. Le, J. Math. Phys. 54, 052105 (2013)
N.-T. Hoang-Do, Q.-G. Le, T.-M. Nguyen, V.-H. Le, J. Sci. HCMC UP Nat. Sci. Tech. 43, 23 (2013)
C.Z. An, I.D. Feranchuk, L.I. Komarov, L.I. Nakhamchik, J. Phys. A Math. Gen. 19, 1583 (1986)
Q.-K. Hoang, V.-H. Le, L.I. Komarov, Proc. Natl. Acad. Sci. Belarus Ser Phys. Math. Sci. 3, 71 (1997)
M. Abramowitz, I.A. Stegun, Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, 9th edn. (Dover, New York, 1972)
F.T. Hioe, D. MacMillen, E.W. Montroll, Phys. Rep. 43, 305 (1978)
L.V. Keldysh, A.N. Kozlov, Zh. Eksp. Teor. Fiz. 54, 978 (1968)
B.P. Zakharchenya, Usp. Fiz. Nauk 164, 345 (1994)
S. Takeyama, Y. Natori, Y. Hirayama, E. Kojima, Y. Arishima, H. Mino, G. Karczewski, T. Wojtowicz, J. Kossut, J. Phys. Soc. Jpn. 77, 044702 (2008)
L. Hilico, B. Gremaud, T. Jonckheere, N. Billy, D. Delande, Phys. Rev. A 66, 022101 (2002)
S.H. Patil, Eur. J. Phys. 29, 517 (2008)
Author information
Authors and Affiliations
Rights and permissions
Copyright information
© 2015 Springer International Publishing Switzerland
About this chapter
Cite this chapter
Feranchuk, I., Ivanov, A., Le, VH., Ulyanenkov, A. (2015). Two-Dimensional Exciton in Magnetic Field with Arbitrary Strength. In: Non-perturbative Description of Quantum Systems. Lecture Notes in Physics, vol 894. Springer, Cham. https://doi.org/10.1007/978-3-319-13006-4_6
Download citation
DOI: https://doi.org/10.1007/978-3-319-13006-4_6
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-13005-7
Online ISBN: 978-3-319-13006-4
eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)