Skip to main content

Two-Dimensional Exciton in Magnetic Field with Arbitrary Strength

  • 1174 Accesses

Part of the Lecture Notes in Physics book series (LNP,volume 894)

Abstract

A two-dimensional exciton in a magnetic field has been of great interest to both theoretical and experimental researchers for many years [1–3] and continues to be after several new and interesting physical effects discovered in recent years [4–7]. The energy spectrum and wave function of exciton in magnetic field, therefore, need to be calculated with increasing precision. Since the 1990s, the perturbation method, the variational method and some other numerical methods have been employed to calculate the energy of this system in weak and strong magnetic fields [1, 3].

Keywords

  • Wave Function
  • Magnetic Field Strength
  • Operator Method
  • Strong Magnetic Field
  • Decimal Place

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-319-13006-4_6
  • Chapter length: 35 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   69.99
Price excludes VAT (USA)
  • ISBN: 978-3-319-13006-4
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   89.99
Price excludes VAT (USA)
Fig. 6.1
Fig. 6.2
Fig. 6.3
Fig. 6.4
Fig. 6.5

References

  1. W. Edelstein, Phys. Rev. B 39, 7697 (1989)

    CrossRef  ADS  Google Scholar 

  2. A.H. MacDonald, D.S. Ritchie, Phys. Rev. B 33, 8336 (1986)

    CrossRef  ADS  Google Scholar 

  3. J.-L. Zhu, Y. Cheng, J.-J. Xiong, Phys. Rev. B 41, 10792 (1990)

    CrossRef  ADS  Google Scholar 

  4. G.V. Astakhov, D.R. Yakovlev, V.V. Rudenkov, P.C.H. Christianen, T. Barrick, S.A. Gooker, A.B. Dzyubenko, W. Ossau, J.C. Maan, G. Karczewshi, T. Wojtowicz, Phys. Rev. B 71, 201312 (2005)

    CrossRef  ADS  Google Scholar 

  5. A. Bruno-Alfonso, L. Candido, G.Q. Haiz, J. Phys. Condens. Matter 22, 125801 (2010)

    CrossRef  ADS  Google Scholar 

  6. A. Poszwa, Phys. Scr. 84, 055002 (2011)

    CrossRef  ADS  Google Scholar 

  7. D. Nandi, A.D.K. Finck, J.P. Eisenstein, L.N. Pfeiffer, K.W. West, Nature 488, 481 (2012)

    CrossRef  ADS  Google Scholar 

  8. V.M. Villalba, R. Pino, Physica B 315, 289 (2002)

    CrossRef  ADS  Google Scholar 

  9. A. Soylu, I. Boztosun, Physica E 40, 443 (2008)

    CrossRef  ADS  MathSciNet  Google Scholar 

  10. T. Levi-Civita, Acta Math. 30, 305 (1906)

    CrossRef  MATH  MathSciNet  Google Scholar 

  11. V.-H. Le, T.-G. Nguyen, J. Phys. A Math. Gen. 26, 1409 (1993)

    CrossRef  MATH  Google Scholar 

  12. J. Zhu, S.L. Ban, S.H. Ha, Phys. Stat. Sol. B 248, 384 (2011)

    CrossRef  ADS  Google Scholar 

  13. F. Milota, J. Sperling, A. Nemeth, T. Mancal, H.F. Kauffmann, Acc. Chem. Res. 42, 1364 (2009)

    CrossRef  Google Scholar 

  14. N.-T. Hoang-Do, D.-L. Pham, V.-H. Le, Physica B 423, 31 (2013)

    CrossRef  ADS  Google Scholar 

  15. N.-T. Hoang-Do, V.-H. Hoang, V.-H. Le, J. Math. Phys. 54, 052105 (2013)

    CrossRef  ADS  MathSciNet  Google Scholar 

  16. N.-T. Hoang-Do, Q.-G. Le, T.-M. Nguyen, V.-H. Le, J. Sci. HCMC UP Nat. Sci. Tech. 43, 23 (2013)

    Google Scholar 

  17. C.Z. An, I.D. Feranchuk, L.I. Komarov, L.I. Nakhamchik, J. Phys. A Math. Gen. 19, 1583 (1986)

    CrossRef  ADS  MATH  Google Scholar 

  18. Q.-K. Hoang, V.-H. Le, L.I. Komarov, Proc. Natl. Acad. Sci. Belarus Ser Phys. Math. Sci. 3, 71 (1997)

    Google Scholar 

  19. M. Abramowitz, I.A. Stegun, Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, 9th edn. (Dover, New York, 1972)

    MATH  Google Scholar 

  20. F.T. Hioe, D. MacMillen, E.W. Montroll, Phys. Rep. 43, 305 (1978)

    CrossRef  ADS  MathSciNet  Google Scholar 

  21. L.V. Keldysh, A.N. Kozlov, Zh. Eksp. Teor. Fiz. 54, 978 (1968)

    Google Scholar 

  22. B.P. Zakharchenya, Usp. Fiz. Nauk 164, 345 (1994)

    CrossRef  Google Scholar 

  23. S. Takeyama, Y. Natori, Y. Hirayama, E. Kojima, Y. Arishima, H. Mino, G. Karczewski, T. Wojtowicz, J. Kossut, J. Phys. Soc. Jpn. 77, 044702 (2008)

    CrossRef  ADS  Google Scholar 

  24. L. Hilico, B. Gremaud, T. Jonckheere, N. Billy, D. Delande, Phys. Rev. A 66, 022101 (2002)

    CrossRef  ADS  MathSciNet  Google Scholar 

  25. S.H. Patil, Eur. J. Phys. 29, 517 (2008)

    CrossRef  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and Permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Feranchuk, I., Ivanov, A., Le, VH., Ulyanenkov, A. (2015). Two-Dimensional Exciton in Magnetic Field with Arbitrary Strength. In: Non-perturbative Description of Quantum Systems. Lecture Notes in Physics, vol 894. Springer, Cham. https://doi.org/10.1007/978-3-319-13006-4_6

Download citation