Abstract
The multi-dimensional physical systems with low number of the degrees of freedom take a special place in the development of new analytical and approximate methods for theoretical physics. The approaches used for the systems with the large number of the degrees of freedom and applied to the statistical physics and to the theory of the quantum field are not useable for multi-dimensional systems. For the latter, the alternative approaches are used, which split the variables in Schrödinger equation.
Keywords
- Operator Method
- Effective Charge
- Adiabatic Approximation
- Zeroth Approximation
- Zeroth Order Approximation
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
This is a preview of subscription content, access via your institution.
Buying options
References
M. Born, J.R. Oppenheimer, Ann. Phys. 84, 457 (1927)
L.D. Landau, E.M. Lifshitz, Quantum Mechanics (Fizmatgiz, Moscow, 2004)
M.R.M. Witwit, J. Phys. A Math. Gen. 24, 4535 (1991)
H. Taseli, R. Eid, J. Phys. A Math. Gen. 29, 6967 (1996)
H.A. Bethe, E.E. Salpeter, Quantum Mechanics of One- and Two-Electron Atoms (Plenum, New York, 1977)
F.M. Fernandez, Phys. Rev. A 50, 2953 (1994)
A.S. Davydov, Quantum Mechanics (in Russian) (BHV-Peterburg, Saint-Peterburg, 2011)
F.T. Hioe, D. MacMillen, E.W. Montroll, Phys. Rep. 335, 307 (1978)
I.D. Feranchuk, V.S. Kuz’min, A.P. Ulyanenkov, Chem. Phys. 157, 61 (1991)
A. Messiah, Quantum Mechanics (North-Holland, Amsterdam, 1976)
D. Farrelly, W.P. Reinhardt, J. Phys. B Atom. Mol. 16, 2103 (1983)
P.E. Grabowski, Phys. Rev. A 81, 032508 (2010)
K. Frankowski, C. Pekeris, Phys. Rev. 146, 145 (1966)
D. Freund, B. Huxtable, J. Morgan III, Phys. Rev. A 29, 980 (1984)
C.F. Fischer, The Hartree-Fock Method for Atoms. Numerical Approach (Wiley, New York, 1977)
J. Zamastil, Z. Cizek, L. Scala, M. Simanek, Phys. Rev. A 81, 032118 (2010)
I.D. Feranchuk, V.V. Triguk, Phys. Lett. A 375, 2550 (2011)
I.D. Feranchuk, V.V. Triguk, J. Appl. Spectr. 77, 749 (2011)
A. Dalgarno, Proc. R. Soc. 233A, 70 (1955)
L.C. Hostler, Phys. Rev. 178, 126 (1969)
L.C. Hostler, J. Math. Phys. 5, 591 (1964)
I.S. Gradshtein, I.M. Ryzhik, Tables of Integrals, Sums, Series and Products (FIZMATGIZ, Moscow, 1963)
R. Shakeshaft, Phys. Rev. A 70, 042704 (2004)
C.W. Sherr, R.E. Knight, Rev. Mod. Phys. 35, 436 (1963)
I.D. Feranchuk, L.I. Komarov, I.V. Nechipor, A.P. Ulyanenkov, Ann. Phys. 238, 370 (1995)
C.L. Pekeris, Phys. Rev. 126, 1470 (1962)
V. Yerokhin, K. Pachucki, Phys. Rev. A 81, 022507 (2010)
R.J. Drachman, Phys. Rev. A 26, 1228 (1982)
Author information
Authors and Affiliations
Rights and permissions
Copyright information
© 2015 Springer International Publishing Switzerland
About this chapter
Cite this chapter
Feranchuk, I., Ivanov, A., Le, VH., Ulyanenkov, A. (2015). Quantum Systems with Several Degrees of Freedom. In: Non-perturbative Description of Quantum Systems. Lecture Notes in Physics, vol 894. Springer, Cham. https://doi.org/10.1007/978-3-319-13006-4_5
Download citation
DOI: https://doi.org/10.1007/978-3-319-13006-4_5
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-13005-7
Online ISBN: 978-3-319-13006-4
eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)