Skip to main content

Quantum Systems with Several Degrees of Freedom

  • 1160 Accesses

Part of the Lecture Notes in Physics book series (LNP,volume 894)

Abstract

The multi-dimensional physical systems with low number of the degrees of freedom take a special place in the development of new analytical and approximate methods for theoretical physics. The approaches used for the systems with the large number of the degrees of freedom and applied to the statistical physics and to the theory of the quantum field are not useable for multi-dimensional systems. For the latter, the alternative approaches are used, which split the variables in Schrödinger equation.

Keywords

  • Operator Method
  • Effective Charge
  • Adiabatic Approximation
  • Zeroth Approximation
  • Zeroth Order Approximation

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-319-13006-4_5
  • Chapter length: 28 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   69.99
Price excludes VAT (USA)
  • ISBN: 978-3-319-13006-4
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   89.99
Price excludes VAT (USA)

References

  1. M. Born, J.R. Oppenheimer, Ann. Phys. 84, 457 (1927)

    CrossRef  MATH  Google Scholar 

  2. L.D. Landau, E.M. Lifshitz, Quantum Mechanics (Fizmatgiz, Moscow, 2004)

    Google Scholar 

  3. M.R.M. Witwit, J. Phys. A Math. Gen. 24, 4535 (1991)

    CrossRef  ADS  MathSciNet  Google Scholar 

  4. H. Taseli, R. Eid, J. Phys. A Math. Gen. 29, 6967 (1996)

    CrossRef  ADS  MATH  MathSciNet  Google Scholar 

  5. H.A. Bethe, E.E. Salpeter, Quantum Mechanics of One- and Two-Electron Atoms (Plenum, New York, 1977)

    CrossRef  Google Scholar 

  6. F.M. Fernandez, Phys. Rev. A 50, 2953 (1994)

    CrossRef  ADS  Google Scholar 

  7. A.S. Davydov, Quantum Mechanics (in Russian) (BHV-Peterburg, Saint-Peterburg, 2011)

    Google Scholar 

  8. F.T. Hioe, D. MacMillen, E.W. Montroll, Phys. Rep. 335, 307 (1978)

    MathSciNet  Google Scholar 

  9. I.D. Feranchuk, V.S. Kuz’min, A.P. Ulyanenkov, Chem. Phys. 157, 61 (1991)

    Google Scholar 

  10. A. Messiah, Quantum Mechanics (North-Holland, Amsterdam, 1976)

    Google Scholar 

  11. D. Farrelly, W.P. Reinhardt, J. Phys. B Atom. Mol. 16, 2103 (1983)

    CrossRef  ADS  Google Scholar 

  12. P.E. Grabowski, Phys. Rev. A 81, 032508 (2010)

    CrossRef  ADS  Google Scholar 

  13. K. Frankowski, C. Pekeris, Phys. Rev. 146, 145 (1966)

    CrossRef  Google Scholar 

  14. D. Freund, B. Huxtable, J. Morgan III, Phys. Rev. A 29, 980 (1984)

    CrossRef  ADS  Google Scholar 

  15. C.F. Fischer, The Hartree-Fock Method for Atoms. Numerical Approach (Wiley, New York, 1977)

    Google Scholar 

  16. J. Zamastil, Z. Cizek, L. Scala, M. Simanek, Phys. Rev. A 81, 032118 (2010)

    CrossRef  ADS  Google Scholar 

  17. I.D. Feranchuk, V.V. Triguk, Phys. Lett. A 375, 2550 (2011)

    CrossRef  ADS  MATH  Google Scholar 

  18. I.D. Feranchuk, V.V. Triguk, J. Appl. Spectr. 77, 749 (2011)

    CrossRef  Google Scholar 

  19. A. Dalgarno, Proc. R. Soc. 233A, 70 (1955)

    CrossRef  ADS  MathSciNet  Google Scholar 

  20. L.C. Hostler, Phys. Rev. 178, 126 (1969)

    CrossRef  ADS  Google Scholar 

  21. L.C. Hostler, J. Math. Phys. 5, 591 (1964)

    CrossRef  ADS  MathSciNet  Google Scholar 

  22. I.S. Gradshtein, I.M. Ryzhik, Tables of Integrals, Sums, Series and Products (FIZMATGIZ, Moscow, 1963)

    Google Scholar 

  23. R. Shakeshaft, Phys. Rev. A 70, 042704 (2004)

    CrossRef  ADS  Google Scholar 

  24. C.W. Sherr, R.E. Knight, Rev. Mod. Phys. 35, 436 (1963)

    CrossRef  ADS  Google Scholar 

  25. I.D. Feranchuk, L.I. Komarov, I.V. Nechipor, A.P. Ulyanenkov, Ann. Phys. 238, 370 (1995)

    CrossRef  ADS  MATH  Google Scholar 

  26. C.L. Pekeris, Phys. Rev. 126, 1470 (1962)

    CrossRef  ADS  Google Scholar 

  27. V. Yerokhin, K. Pachucki, Phys. Rev. A 81, 022507 (2010)

    CrossRef  ADS  Google Scholar 

  28. R.J. Drachman, Phys. Rev. A 26, 1228 (1982)

    CrossRef  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and Permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Feranchuk, I., Ivanov, A., Le, VH., Ulyanenkov, A. (2015). Quantum Systems with Several Degrees of Freedom. In: Non-perturbative Description of Quantum Systems. Lecture Notes in Physics, vol 894. Springer, Cham. https://doi.org/10.1007/978-3-319-13006-4_5

Download citation