Skip to main content

Operator Method for Quantum Statistics

  • 1179 Accesses

Part of the Lecture Notes in Physics book series (LNP,volume 894)

Abstract

The construction of the uniformly available approximation (UAA) for thermodynamical functions has two specific features, which differ it from the solution of the Schrödinger equation for stationary states. First of all, these functions depend both on Hamiltonian parameters and on the temperature T.

Keywords

  • Suitable Uniformity
  • Cumulant Expansion (CE)
  • Direct Summation Method
  • Zeroth Approximation
  • Effective Inverse Temperature

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-319-13006-4_4
  • Chapter length: 57 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   69.99
Price excludes VAT (USA)
  • ISBN: 978-3-319-13006-4
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   89.99
Price excludes VAT (USA)
Fig. 4.1
Fig. 4.2
Fig. 4.3
Fig. 4.4
Fig. 4.5
Fig. 4.6
Fig. 4.7
Fig. 4.8
Fig. 4.9
Fig. 4.10
Fig. 4.11
Fig. 4.12
Fig. 4.13
Fig. 4.14
Fig. 4.15
Fig. 4.16
Fig. 4.17
Fig. 4.18
Fig. 4.19
Fig. 4.20

References

  1. I.D. Feranchuk, A.A. Ivanov, J. Phys. A: Math. Gen. 37, 9841 (2004)

    CrossRef  ADS  MATH  MathSciNet  Google Scholar 

  2. A.A. Ivanov, I.D. Feranchuk, Proc. Natl. Acad. Sci. Belarus, Ser. Phys. Math. Sci (in Russian) 4, 64 (2004)

    Google Scholar 

  3. I.D. Feranchuk, A.A. Ivanov, Fluctuating Path and Fields, vol. 1 (World Scientific, Singapore, 2001), p. 329.

    Google Scholar 

  4. H. Cramer, Mathematical Methods of Statistics (Princeton University Press, Princeton, 1999)

    MATH  Google Scholar 

  5. R.P. Feynman, A.R. Hibbs, Quantum Mechanics and Path Integrals (McGraw-Hill, New York, 1965)

    MATH  Google Scholar 

  6. A.N. Malakhov, Cumulant Analysis of Random NonGaussian Processes (in Russian) (Nauka, Moscow, 1978)

    Google Scholar 

  7. C. Domh, J.L. Lebowitz, Phase Transitions and Crytical Phenomena (Academic Press, New York, 1991)

    Google Scholar 

  8. Y.V. Nazamov, Quantum Noise in Mesoscopic Physics (NATO Science Series, Dordrecht, 2003)

    CrossRef  Google Scholar 

  9. I.D. Feranchuk, L.I. Komarov, I.V. Nechipor, A.P. Ulyanenkov, Ann. Phys. (N Y) 238, 370 (1995)

    CrossRef  ADS  MATH  Google Scholar 

  10. F.T. Hioe, D. MacMillen, E.W. Montroll, Phys. Rep. 335, 307 (1978)

    MathSciNet  Google Scholar 

  11. H. Kleinert, Path Integrals in Quantum Mechanics, Statistics, Polymer Physics, and Financial Markets, 5th edn. (World Scientific, Singapore, 2009)

    CrossRef  MATH  Google Scholar 

  12. H. Meissner, E.O. Steinborn, Phys. Rev. A 56, 1189 (1997)

    CrossRef  ADS  Google Scholar 

  13. L.D. Landau, E.M. Lifshitz, Statistical Physics (Nauka, Moscow, 1976)

    Google Scholar 

  14. I.S. Gradshtein, I.M. Ryzhik, Tables of Integrals, Sums, Series and Products (FIZMATGIZ, Moscow, 1963)

    Google Scholar 

  15. M. Abramowitz, I.A. Stegun, Handbook of Mathematical Functions (Dover, New York, 1964)

    MATH  Google Scholar 

  16. I.D. Feranchuk, V.S. Kuz’min, A.P. Ulyanenkov, Chem. Phys. 157, 61 (1991)

    Google Scholar 

  17. I.D. Feranchuk, A.L. Tolstik, J. Phys. A Math. Gen. 32, 2115 (1999)

    CrossRef  ADS  MATH  MathSciNet  Google Scholar 

  18. L.D. Landau, E.M. Lifshitz, Quantum Mechanics (Fizmatgiz, Moscow, 2004)

    Google Scholar 

  19. I.D. Feranchuk, A.A. Ivanov, Nonlinear Phenom. Complex Syst. 7, 377 (2004)

    Google Scholar 

  20. L.D. Landau, E.M. Lifshitz, Physical Kinetics (Nauka, Moscow, 1979)

    Google Scholar 

  21. B.G. Bokii, Crystallochemie (in Russian) (Nauka, Moscow, 1971)

    Google Scholar 

  22. K.P. Huber, G. Gerzberg, Molecular Spectra and Molecular Structure. V.4 Constants of Diatomic Molecules (Van Rostrand Reinhold, New York, 1979)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and Permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Feranchuk, I., Ivanov, A., Le, VH., Ulyanenkov, A. (2015). Operator Method for Quantum Statistics. In: Non-perturbative Description of Quantum Systems. Lecture Notes in Physics, vol 894. Springer, Cham. https://doi.org/10.1007/978-3-319-13006-4_4

Download citation