Skip to main content

Basics of the Operator Method

Part of the Lecture Notes in Physics book series (LNP,volume 894)

Abstract

The majority of approximate methods for the solution of Schrödinger equation (SE) demonstrated in Chap. 1 is not sufficiently universal and theirs applications in the case of system with many degrees of freedom are bound up with serious difficulties. In the following chapters we consider the method which is proposed as an universal procedure for transformation of the perturbation series and its further applications for various quantum systems. We call this technique operator method (OM) in the sense that all calculations are reduced to the algebraic manipulations with the operator matrix elements without solving any differential or integral equations, in zeroth-order approximation as well as in calculating the successive approximations. The results prove that the OM zeroth-order approximation provides an uniformly fitted estimation of the SE eigenvalues and eigenfunctions in the entire range of the Hamiltonian parameters.

Keywords

  • Wave Function
  • Matrix Element
  • State Vector
  • Operator Method
  • Canonical Transformation

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-319-13006-4_2
  • Chapter length: 54 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   69.99
Price excludes VAT (USA)
  • ISBN: 978-3-319-13006-4
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   89.99
Price excludes VAT (USA)
Fig. 2.1
Fig. 2.2
Fig. 2.3
Fig. 2.4
Fig. 2.5
Fig. 2.6
Fig. 2.7
Fig. 2.8
Fig. 2.9
Fig. 2.10
Fig. 2.11

References

  1. I.D. Feranchuk, L.I. Komarov, Phys. Lett. A, 88, 211 (1982)

    CrossRef  ADS  MathSciNet  Google Scholar 

  2. I.D. Feranchuk, L.I. Komarov, J. Phys. C. Solid State Phys. 15, 1965 (1982)

    CrossRef  ADS  Google Scholar 

  3. I.D. Feranchuk, L.I. Komarov, J. Phys. A: Math. Gen. 17, 3111 (1984)

    CrossRef  ADS  MathSciNet  Google Scholar 

  4. I.G. Holliday, P. Suranyi, Phys. Lett. B 85, 421 (1979)

    CrossRef  ADS  Google Scholar 

  5. W.E. Caswell, Ann. Phys. (N.Y.) 123, 153 (1979)

    Google Scholar 

  6. I.G. Holliday, P. Suranyi, Phys. Rev. D 21, 1529 (1980)

    CrossRef  ADS  MathSciNet  Google Scholar 

  7. I.K. Dmitrieva, G.I. Plindov, Phys. Lett. A 79, 47 (1980)

    CrossRef  ADS  MathSciNet  Google Scholar 

  8. K. Bhattacharyya, J. Phys. B: At. Mol. Phys. 14, 783 (1981)

    CrossRef  ADS  Google Scholar 

  9. J. Austin, J. Killingbeck, J. Phys. A: Math. Gen. 15, L433, (1982)

    CrossRef  MathSciNet  Google Scholar 

  10. C.K. Au, G.W. Roders, J. Aharonov, Phys. Lett. A 95, 287 (1983)

    CrossRef  ADS  Google Scholar 

  11. F.M. Fernandez, E.A. Castro, Phys. Lett. A 88, 4 (1982)

    CrossRef  ADS  Google Scholar 

  12. F.M. Fernandez, E.A. Castro, Phys. Lett. A 91, 339 (1982)

    CrossRef  ADS  Google Scholar 

  13. F.M. Fernandez, A.M. Meson, E.A. Castro, Phys. Lett. A 104, 401 (1984)

    CrossRef  ADS  Google Scholar 

  14. F.M. Fernandez, A.M. Meson, E.A. Castro, Phys. Lett. A 111, 104 (1985)

    CrossRef  ADS  MathSciNet  Google Scholar 

  15. F.M. Fernandez, A.M. Meson, E.A. Castro, Phys. Lett. A 112, 107 (1985)

    CrossRef  ADS  MathSciNet  Google Scholar 

  16. F.M. Fernandez, A.M. Meson, E.A. Castro, Mol. Phys. 59, 365 (1986)

    CrossRef  ADS  Google Scholar 

  17. C.C. Gerry, S. Silverman, Phys. Lett. A 97, 481 (1983)

    CrossRef  ADS  MathSciNet  Google Scholar 

  18. W. Witschel, Phys. Lett. A 97, 315 (1983)

    CrossRef  ADS  Google Scholar 

  19. H. Mitter, K. Yamazaki, J. Phys. A: Math. Gen. 17, 1215 (1984)

    CrossRef  ADS  MathSciNet  Google Scholar 

  20. B. Bidyut, B. Sikha, R. Raykumar, Fizika 16, 161 (1984)

    Google Scholar 

  21. K. Yamazaki, J. Phys. A: Math. Gen. 17, 345 (1984)

    CrossRef  ADS  Google Scholar 

  22. C.-S. Hsue, J.L. Chern, Phys. Rev. D 29, 643 (1984)

    CrossRef  ADS  MathSciNet  Google Scholar 

  23. B. Rath, J. Math. Phys. 31, 1175 (1991)

    CrossRef  ADS  MathSciNet  Google Scholar 

  24. K.L. Chan, S.K. Lee, K.L. Liu, K. Young, C.K. Au, Phys. Lett. A 162, 227 (1992)

    CrossRef  ADS  Google Scholar 

  25. I.D. Feranchuk, S.I. Fisher, L.I. Komarov, J. Phys. C: Solid State Phys. 17, 4309 (1984)

    CrossRef  ADS  Google Scholar 

  26. C.Z. An, I.D. Feranchuk, Mol. Phys. 64, 589 (1988)

    CrossRef  ADS  Google Scholar 

  27. I.D. Feranchuk, L.X. Hai, Phys. Lett. A 137, 385 (1989)

    CrossRef  ADS  Google Scholar 

  28. L.I. Komarov, T.S. Romanova, J. Phys. B: At. Mol. Phys. 18, 859 (1985)

    CrossRef  ADS  MathSciNet  Google Scholar 

  29. I.D. Feranchuk, S.I. Fisher, L.I. Komarov, J. Phys. C: Solid State Phys. 18, 5083 (1985)

    CrossRef  ADS  Google Scholar 

  30. C.Z. An, I.D. Feranchuk, L.I. Komarov, L.I. Nakhamchik, J. Phys. A: Math. Gen. 19, 1583 (1986)

    CrossRef  ADS  MATH  Google Scholar 

  31. I.D. Feranchuk, L.I. Komarov, I.V. Nechipor, J. Phys. A: Math. Gen. 20, 3849 (1987)

    CrossRef  ADS  MathSciNet  Google Scholar 

  32. C.Z. An, I.D. Feranchuk, L.I. Komarov, Phys. Lett. A 125, 123 (1987)

    CrossRef  ADS  Google Scholar 

  33. I.D. Feranchuk, L.I. Komarov, Phys. Lett. A 106, 109 (1984)

    CrossRef  ADS  MathSciNet  Google Scholar 

  34. I.D. Feranchuk, V.N. T’ok, Chem. Phys. Lett. 150, 78 (1988)

    Google Scholar 

  35. I.D. Feranchuk, V.S. Kuz’min, A.P. Ulyanenkov, Chem. Phys. 157, 61 (1991)

    Google Scholar 

  36. I.D. Feranchuk, A.P. Ulyanenkov, NIM B 88, 369 (1994)

    CrossRef  ADS  Google Scholar 

  37. I.D. Feranchuk, L.I. Komarov, A.P. Ulyanenkov, J. Phys. A: Math. Gen. 29, 4035 (1996)

    CrossRef  ADS  MATH  Google Scholar 

  38. I.D. Feranchuk, L.I. Komarov, A.P. Ulyanenkov, J. Phys. B: At. Mol. Opt. Phys. 35, 3957 (2002)

    CrossRef  ADS  Google Scholar 

  39. I.D. Feranchuk, L.I. Gurskii, L.I. Komarov, O.M. Lugovskaya, F. Burgäzy, A.P. Ulyanenkov, Acta Crystallogr. A 58, 370 (2002)

    CrossRef  Google Scholar 

  40. L.V. Hoang, L.I. Komarov, T.S. Romanova, J. Phys. A: Math. Gen. 22, 1543 (1989)

    CrossRef  ADS  MATH  Google Scholar 

  41. L.I. Gurskii, L.I. Komarov, A.M. Solodukhin, Int. J. Quantum Chem. 72, 499 (1999)

    CrossRef  Google Scholar 

  42. I.D. Feranchuk, A.V. Leonov, Phys. Lett. A 375, 385 (2011)

    CrossRef  ADS  MATH  Google Scholar 

  43. I.D. Feranchuk, V.V. Triguk, Phys. Lett. A 375, 2550 (2011)

    CrossRef  ADS  MATH  Google Scholar 

  44. I.D. Feranchuk, L.I. Komarov, I.V. Nechipor, A.P. Ulyanenkov, Ann. Phys. (N Y) 238, 370 (1995)

    CrossRef  ADS  MATH  Google Scholar 

  45. A. Duncan, H.F. Jones, Nucl. Phys. B 320, 189 (1989)

    CrossRef  ADS  Google Scholar 

  46. V.V. Kudrashov, V.I. Reshetnyak, E.A. Tolkachov, Dokl. Belarusian Acad. Sci. (in Russian) 31, 135 (1987)

    Google Scholar 

  47. F.T. Hioe, D. MacMillen, E.W. Montroll, Phys. Rep. 335, 307 (1978)

    MathSciNet  Google Scholar 

  48. F.M. Fernandez, E.A. Castro, Phys. Lett. A 88, 5083 (1982)

    CrossRef  Google Scholar 

  49. I.I. Gegusin, L.I. Leontieva, J. Phys. C: Condens. Matter 2, 5869 (1990)

    Google Scholar 

  50. S. Srivastava, Vishamitter, Mol. Phys. 72, 1285 (1991)

    CrossRef  ADS  Google Scholar 

  51. F.A. Kaempfer, Concepts in Quantum Mechanics (Academic, New York, 1965)

    Google Scholar 

  52. D.A. Kirzhnitz, Field Methods of Many–Particle Theory (in Russian) (Gosatomizdat, Moscow, 1963)

    Google Scholar 

  53. A.J. Barnes, W.J. Orville-Thomas, (ed.), Vibrational Spectroscopy. Modern Trends (Oxford, Amsterdam, Elsevier, New York, 1977)

    Google Scholar 

  54. C. Hayashi, Nonlinear Oscillations in Physical Systems (McGraw-Hill, New York, 1964)

    MATH  Google Scholar 

  55. I.S. Gradshtein, I.M. Ryzhik, Tables of Integrals, Sums, Series and Products (FIZMATGIZ, Moscow, 1963)

    Google Scholar 

  56. A. Messiah, Quantum Mechanics (North-Holland, Amsterdam, 1976)

    Google Scholar 

  57. N.H. March, W.H. Young, S. Sampanthar, The Many-Body Problem in Quantum Mechanics (University Press, Cambridge, 1967)

    Google Scholar 

  58. M.L. Goldberger, K.M. Watson, Collision Theory (Wiley, New York, 1964)

    MATH  Google Scholar 

  59. V.G. Baryshevsky, High-Energy Nuclear Optics of Polarised Media (World Scientific, Singapore, 2012)

    CrossRef  Google Scholar 

  60. P.E. Shanley, Phys. Lett. A 117, 161 (1986)

    CrossRef  ADS  Google Scholar 

  61. R.J. Damburg, V.G. Kolosov, J. Phys. B: At. Mol. 9, 3149 (1976)

    CrossRef  ADS  Google Scholar 

  62. H.K. Shepard, Phys. Rev. D 27, 1288 (1983)

    CrossRef  ADS  Google Scholar 

  63. D. Farrelly, W.P. Reinhardt, J. Phys. B: At. Mol. 16, 2103 (1983)

    CrossRef  ADS  Google Scholar 

  64. P.M. Morse, H. Feshbach, Methods of Theoretical Physics (McGraw-Hill, New York, 1953)

    MATH  Google Scholar 

  65. J.E. Drummond, J. Phys. A: Math. Gen. 14, 1651 (1981)

    CrossRef  ADS  Google Scholar 

  66. N.N. Bogoliubov, Physica 26, 1 (1960)

    CrossRef  ADS  Google Scholar 

  67. G. Ross, Grand Unified Theories (Westview Press, USA, 1984)

    Google Scholar 

  68. L.D. Landau, E.M. Lifshitz, Quantum Mechanics (Fizmatgiz, Moscow, 2004)

    Google Scholar 

  69. M.O. Scully, M.S. Zubairy, Quantum Optics (Cambridge University Press, Cambridge, 1997)

    CrossRef  Google Scholar 

  70. A. Bohm, Quantum Mechanics: Foundations and Applications (Springer, New York, 1986)

    CrossRef  MATH  Google Scholar 

  71. C.G. Callan, S. Coleman, Phys. Rev. D 16, 1762, (1977)

    CrossRef  ADS  Google Scholar 

  72. F.M. Fernandez, E.A. Castro, A.M. Meson, J. Phys. A: Math. Gen. 7, 1389 (1985)

    CrossRef  ADS  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and Permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Feranchuk, I., Ivanov, A., Le, VH., Ulyanenkov, A. (2015). Basics of the Operator Method. In: Non-perturbative Description of Quantum Systems. Lecture Notes in Physics, vol 894. Springer, Cham. https://doi.org/10.1007/978-3-319-13006-4_2

Download citation