Abstract
The majority of physical phenomena in condensed matter, atomic and molecular systems is defined by electromagnetic interactions and governed by quantum mechanics laws. The systems possess an entirely defined Hamiltonian and the physical properties are described by the corresponding solutions of Schrödinger equation. The quantum description has an universal character, which assumes the wave functions of complex systems are the solutions of the linear equations, which have similar mathematical structure for the physical systems with essentially different physical properties.
Keywords
- Particle Number Representation
- Quantum Anharmonic Oscillator (QAO)
- Zeroth Approximation
- Pade Approximants
- Canonical Perturbation Theory
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
This is a preview of subscription content, access via your institution.
Buying options



References
E. Wigner, Symmetries and Reflections. Scientific Essays (Indiana University Press, Bloomington, 1967)
R.P. Feynman, A.R. Hibbs, Quantum Mechanics and Path Integrals (McGraw-Hill, New York, 1965)
H. Kleinert, Path Integrals in Quantum Mechanics, Statistics, Polymer Physics, and Financial Markets, 5th edn. (World Scientific, Singapore, 2009)
L.D. Landau, E.M. Lifshitz, Quantum Mechanics (Fizmatgiz, Moscow, 2004)
P.M. Morse, H. Feshbach, Methods of Theoretical Physics (McGraw-Hill, New York, 1953)
N.N. Bogolubov, Selected Works, vol. 2 (in russian) (Navukova Dumka, Kiev, 1972), p. 499
B.-G. Englert, Semiclassical Theory of Atoms (Springer, Berlin, 1988)
F. Strocchi, An Introduction to the Non-Perturbative Foundations of Quantum Field Theory (Oxford University Press, Oxford, 2013)
T. Borne, G. Lochak, H. Stumpf, Nonperturbative Quantum Field Theory and the Structure of Matter (Springer, Heidelberg, 2001)
J. Fröhlich, Non-Perturbative Quantum Field Theory. Mathematical Aspects and Applications (World Scientific, Singapore, 1992)
F.M. Fernandez, E.A. Castro, Algebraic Methods in Quantum Chemistry and Physics (CRC Press, Boca Raton, 1996)
G.N. Hardy, Divergent Series (Clarendon Press, Oxford, 1963)
L. Wuytack, Pade Approximations and its Applications (Springer, New York, 1979)
I.D. Feranchuk, A.A. Ivanov, J. Phys. A Math. Gen. 37, 9841 (2004)
V.I. Yukalov, Theor. Math. Phys. 28, 652 (1976)
V.I. Yukalov, E.P. Yukalova, Chaos Solitons Fractals 14, 839 (2002)
A.N. Sissakian, I.L. Solovtsov, Phys. Element. Part. Atom. Nucl. (in russian) 30, 1057 (1999)
C.M. Bender, T.T. Wu, Phys. Rev 184, 1231 (1969)
F.T. Hioe, D. MacMillen, E.W. Montroll, Phys. Rep. 335, 307 (1978)
A.H. Nayfeh, Perturbation Methods (Wiley, New York, 1973)
P.A.M. Dirac, The Principles of Quantum Mechanics (Oxford University Press, Oxford, 1981.)
A. Messiah, Quantum Mechanics (North-Holland, Amsterdam, 1976)
J.W.S. Rayleigh, Theory of Sound I, 2nd edn. (Macmillan, London, 1894)
E. Schrödinger, Annalen der Physik 80, 437 (1926)
L. Brillouin, Le Journal de Physique et le Radium Series VII 3, 373 (1932)
E.P. Wigner, Math. und Natur. Anzeiger der Ungarischen Akademie der Wissenschaften L3, 475 (1935)
F.M. Fernandez, E.A. Castro, Phys. Lett. A 88, 5083 (1982)
F.T. Hioe, E.W. Montroll, J. Math. Phys 16, 1945 (1975)
I.S. Gradshtein, I.M. Ryzhik, Tables of Integrals, Sums, Series and Products (FIZMATGIZ, Moscow, 1963)
S.G. Mikhlin, Variational Methods in Mathematical Physics (Pergamon Press, Oxford, 1964)
F.M. Fernandez, Phys. Rev. A 50, 2953 (1994)
I.D. Feranchuk, A.L. Tolstik, J. Phys. A Math. Gen. 32, 2115 (1999)
M. Born, J.R. Oppenheimer, Ann. Phys. 84, 457 (1927)
E. Borel, Ann. Sci. École Norm. Sup. 16, 9 (1899)
G.H. Hardy, Divergent Series (Clarendon Press, Oxford, 1949)
O. Costin, Asymptotics and Borel Summability (CRC Press, Boca Raton, 2009)
J.J. Loeffel, A. Martin, B. Simon, A.S. Wightman, Phys. Lett. B 30, 656 (1969)
S. Graffi, V. Grecchi, B. Simon, Phys. Lett. B 32, 631 (1970)
S. Graffi, V. Grecchi, G. Turchetti, Il Nuovo Cimento B 4, 313 (1971)
C.M. Bender, T.T. Wu, Phys. Rev. Lett. 27, 461 (1971)
Author information
Authors and Affiliations
Rights and permissions
Copyright information
© 2015 Springer International Publishing Switzerland
About this chapter
Cite this chapter
Feranchuk, I., Ivanov, A., Le, VH., Ulyanenkov, A. (2015). Capabilities of Approximate Methods in Quantum Theory. In: Non-perturbative Description of Quantum Systems. Lecture Notes in Physics, vol 894. Springer, Cham. https://doi.org/10.1007/978-3-319-13006-4_1
Download citation
DOI: https://doi.org/10.1007/978-3-319-13006-4_1
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-13005-7
Online ISBN: 978-3-319-13006-4
eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)