Skip to main content

Capabilities of Approximate Methods in Quantum Theory

  • 1168 Accesses

Part of the Lecture Notes in Physics book series (LNP,volume 894)

Abstract

The majority of physical phenomena in condensed matter, atomic and molecular systems is defined by electromagnetic interactions and governed by quantum mechanics laws. The systems possess an entirely defined Hamiltonian and the physical properties are described by the corresponding solutions of Schrödinger equation. The quantum description has an universal character, which assumes the wave functions of complex systems are the solutions of the linear equations, which have similar mathematical structure for the physical systems with essentially different physical properties.

Keywords

  • Particle Number Representation
  • Quantum Anharmonic Oscillator (QAO)
  • Zeroth Approximation
  • Pade Approximants
  • Canonical Perturbation Theory

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-319-13006-4_1
  • Chapter length: 25 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   69.99
Price excludes VAT (USA)
  • ISBN: 978-3-319-13006-4
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   89.99
Price excludes VAT (USA)
Fig. 1.1
Fig. 1.2
Fig. 1.3

References

  1. E. Wigner, Symmetries and Reflections. Scientific Essays (Indiana University Press, Bloomington, 1967)

    Google Scholar 

  2. R.P. Feynman, A.R. Hibbs, Quantum Mechanics and Path Integrals (McGraw-Hill, New York, 1965)

    MATH  Google Scholar 

  3. H. Kleinert, Path Integrals in Quantum Mechanics, Statistics, Polymer Physics, and Financial Markets, 5th edn. (World Scientific, Singapore, 2009)

    CrossRef  MATH  Google Scholar 

  4. L.D. Landau, E.M. Lifshitz, Quantum Mechanics (Fizmatgiz, Moscow, 2004)

    Google Scholar 

  5. P.M. Morse, H. Feshbach, Methods of Theoretical Physics (McGraw-Hill, New York, 1953)

    MATH  Google Scholar 

  6. N.N. Bogolubov, Selected Works, vol. 2 (in russian) (Navukova Dumka, Kiev, 1972), p. 499

    Google Scholar 

  7. B.-G. Englert, Semiclassical Theory of Atoms (Springer, Berlin, 1988)

    Google Scholar 

  8. F. Strocchi, An Introduction to the Non-Perturbative Foundations of Quantum Field Theory (Oxford University Press, Oxford, 2013)

    CrossRef  Google Scholar 

  9. T. Borne, G. Lochak, H. Stumpf, Nonperturbative Quantum Field Theory and the Structure of Matter (Springer, Heidelberg, 2001)

    MATH  Google Scholar 

  10. J. Fröhlich, Non-Perturbative Quantum Field Theory. Mathematical Aspects and Applications (World Scientific, Singapore, 1992)

    Google Scholar 

  11. F.M. Fernandez, E.A. Castro, Algebraic Methods in Quantum Chemistry and Physics (CRC Press, Boca Raton, 1996)

    MATH  Google Scholar 

  12. G.N. Hardy, Divergent Series (Clarendon Press, Oxford, 1963)

    Google Scholar 

  13. L. Wuytack, Pade Approximations and its Applications (Springer, New York, 1979)

    CrossRef  Google Scholar 

  14. I.D. Feranchuk, A.A. Ivanov, J. Phys. A Math. Gen. 37, 9841 (2004)

    CrossRef  ADS  MATH  MathSciNet  Google Scholar 

  15. V.I. Yukalov, Theor. Math. Phys. 28, 652 (1976)

    CrossRef  Google Scholar 

  16. V.I. Yukalov, E.P. Yukalova, Chaos Solitons Fractals 14, 839 (2002)

    CrossRef  ADS  MATH  MathSciNet  Google Scholar 

  17. A.N. Sissakian, I.L. Solovtsov, Phys. Element. Part. Atom. Nucl. (in russian) 30, 1057 (1999)

    Google Scholar 

  18. C.M. Bender, T.T. Wu, Phys. Rev 184, 1231 (1969)

    CrossRef  ADS  MathSciNet  Google Scholar 

  19. F.T. Hioe, D. MacMillen, E.W. Montroll, Phys. Rep. 335, 307 (1978)

    MathSciNet  Google Scholar 

  20. A.H. Nayfeh, Perturbation Methods (Wiley, New York, 1973)

    MATH  Google Scholar 

  21. P.A.M. Dirac, The Principles of Quantum Mechanics (Oxford University Press, Oxford, 1981.)

    Google Scholar 

  22. A. Messiah, Quantum Mechanics (North-Holland, Amsterdam, 1976)

    Google Scholar 

  23. J.W.S. Rayleigh, Theory of Sound I, 2nd edn. (Macmillan, London, 1894)

    MATH  Google Scholar 

  24. E. Schrödinger, Annalen der Physik 80, 437 (1926)

    CrossRef  MATH  Google Scholar 

  25. L. Brillouin, Le Journal de Physique et le Radium Series VII 3, 373 (1932)

    CrossRef  Google Scholar 

  26. E.P. Wigner, Math. und Natur. Anzeiger der Ungarischen Akademie der Wissenschaften L3, 475 (1935)

    Google Scholar 

  27. F.M. Fernandez, E.A. Castro, Phys. Lett. A 88, 5083 (1982)

    CrossRef  Google Scholar 

  28. F.T. Hioe, E.W. Montroll, J. Math. Phys 16, 1945 (1975)

    CrossRef  ADS  MathSciNet  Google Scholar 

  29. I.S. Gradshtein, I.M. Ryzhik, Tables of Integrals, Sums, Series and Products (FIZMATGIZ, Moscow, 1963)

    Google Scholar 

  30. S.G. Mikhlin, Variational Methods in Mathematical Physics (Pergamon Press, Oxford, 1964)

    MATH  Google Scholar 

  31. F.M. Fernandez, Phys. Rev. A 50, 2953 (1994)

    CrossRef  ADS  Google Scholar 

  32. I.D. Feranchuk, A.L. Tolstik, J. Phys. A Math. Gen. 32, 2115 (1999)

    CrossRef  ADS  MATH  MathSciNet  Google Scholar 

  33. M. Born, J.R. Oppenheimer, Ann. Phys. 84, 457 (1927)

    CrossRef  MATH  Google Scholar 

  34. E. Borel, Ann. Sci. École Norm. Sup. 16, 9 (1899)

    MATH  MathSciNet  Google Scholar 

  35. G.H. Hardy, Divergent Series (Clarendon Press, Oxford, 1949)

    MATH  Google Scholar 

  36. O. Costin, Asymptotics and Borel Summability (CRC Press, Boca Raton, 2009)

    MATH  Google Scholar 

  37. J.J. Loeffel, A. Martin, B. Simon, A.S. Wightman, Phys. Lett. B 30, 656 (1969)

    CrossRef  ADS  Google Scholar 

  38. S. Graffi, V. Grecchi, B. Simon, Phys. Lett. B 32, 631 (1970)

    CrossRef  ADS  MathSciNet  Google Scholar 

  39. S. Graffi, V. Grecchi, G. Turchetti, Il Nuovo Cimento B 4, 313 (1971)

    CrossRef  ADS  MathSciNet  Google Scholar 

  40. C.M. Bender, T.T. Wu, Phys. Rev. Lett. 27, 461 (1971)

    CrossRef  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and Permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Feranchuk, I., Ivanov, A., Le, VH., Ulyanenkov, A. (2015). Capabilities of Approximate Methods in Quantum Theory. In: Non-perturbative Description of Quantum Systems. Lecture Notes in Physics, vol 894. Springer, Cham. https://doi.org/10.1007/978-3-319-13006-4_1

Download citation