Skip to main content

Capabilities of Approximate Methods in Quantum Theory

  • Chapter
  • First Online:
Non-perturbative Description of Quantum Systems

Part of the book series: Lecture Notes in Physics ((LNP,volume 894))

  • 1232 Accesses

Abstract

The majority of physical phenomena in condensed matter, atomic and molecular systems is defined by electromagnetic interactions and governed by quantum mechanics laws. The systems possess an entirely defined Hamiltonian and the physical properties are described by the corresponding solutions of Schrödinger equation. The quantum description has an universal character, which assumes the wave functions of complex systems are the solutions of the linear equations, which have similar mathematical structure for the physical systems with essentially different physical properties.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. E. Wigner, Symmetries and Reflections. Scientific Essays (Indiana University Press, Bloomington, 1967)

    Google Scholar 

  2. R.P. Feynman, A.R. Hibbs, Quantum Mechanics and Path Integrals (McGraw-Hill, New York, 1965)

    MATH  Google Scholar 

  3. H. Kleinert, Path Integrals in Quantum Mechanics, Statistics, Polymer Physics, and Financial Markets, 5th edn. (World Scientific, Singapore, 2009)

    Book  MATH  Google Scholar 

  4. L.D. Landau, E.M. Lifshitz, Quantum Mechanics (Fizmatgiz, Moscow, 2004)

    Google Scholar 

  5. P.M. Morse, H. Feshbach, Methods of Theoretical Physics (McGraw-Hill, New York, 1953)

    MATH  Google Scholar 

  6. N.N. Bogolubov, Selected Works, vol. 2 (in russian) (Navukova Dumka, Kiev, 1972), p. 499

    Google Scholar 

  7. B.-G. Englert, Semiclassical Theory of Atoms (Springer, Berlin, 1988)

    Google Scholar 

  8. F. Strocchi, An Introduction to the Non-Perturbative Foundations of Quantum Field Theory (Oxford University Press, Oxford, 2013)

    Book  Google Scholar 

  9. T. Borne, G. Lochak, H. Stumpf, Nonperturbative Quantum Field Theory and the Structure of Matter (Springer, Heidelberg, 2001)

    MATH  Google Scholar 

  10. J. Fröhlich, Non-Perturbative Quantum Field Theory. Mathematical Aspects and Applications (World Scientific, Singapore, 1992)

    Google Scholar 

  11. F.M. Fernandez, E.A. Castro, Algebraic Methods in Quantum Chemistry and Physics (CRC Press, Boca Raton, 1996)

    MATH  Google Scholar 

  12. G.N. Hardy, Divergent Series (Clarendon Press, Oxford, 1963)

    Google Scholar 

  13. L. Wuytack, Pade Approximations and its Applications (Springer, New York, 1979)

    Book  Google Scholar 

  14. I.D. Feranchuk, A.A. Ivanov, J. Phys. A Math. Gen. 37, 9841 (2004)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  15. V.I. Yukalov, Theor. Math. Phys. 28, 652 (1976)

    Article  Google Scholar 

  16. V.I. Yukalov, E.P. Yukalova, Chaos Solitons Fractals 14, 839 (2002)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  17. A.N. Sissakian, I.L. Solovtsov, Phys. Element. Part. Atom. Nucl. (in russian) 30, 1057 (1999)

    Google Scholar 

  18. C.M. Bender, T.T. Wu, Phys. Rev 184, 1231 (1969)

    Article  ADS  MathSciNet  Google Scholar 

  19. F.T. Hioe, D. MacMillen, E.W. Montroll, Phys. Rep. 335, 307 (1978)

    MathSciNet  Google Scholar 

  20. A.H. Nayfeh, Perturbation Methods (Wiley, New York, 1973)

    MATH  Google Scholar 

  21. P.A.M. Dirac, The Principles of Quantum Mechanics (Oxford University Press, Oxford, 1981.)

    Google Scholar 

  22. A. Messiah, Quantum Mechanics (North-Holland, Amsterdam, 1976)

    Google Scholar 

  23. J.W.S. Rayleigh, Theory of Sound I, 2nd edn. (Macmillan, London, 1894)

    MATH  Google Scholar 

  24. E. Schrödinger, Annalen der Physik 80, 437 (1926)

    Article  MATH  Google Scholar 

  25. L. Brillouin, Le Journal de Physique et le Radium Series VII 3, 373 (1932)

    Article  Google Scholar 

  26. E.P. Wigner, Math. und Natur. Anzeiger der Ungarischen Akademie der Wissenschaften L3, 475 (1935)

    Google Scholar 

  27. F.M. Fernandez, E.A. Castro, Phys. Lett. A 88, 5083 (1982)

    Article  Google Scholar 

  28. F.T. Hioe, E.W. Montroll, J. Math. Phys 16, 1945 (1975)

    Article  ADS  MathSciNet  Google Scholar 

  29. I.S. Gradshtein, I.M. Ryzhik, Tables of Integrals, Sums, Series and Products (FIZMATGIZ, Moscow, 1963)

    Google Scholar 

  30. S.G. Mikhlin, Variational Methods in Mathematical Physics (Pergamon Press, Oxford, 1964)

    MATH  Google Scholar 

  31. F.M. Fernandez, Phys. Rev. A 50, 2953 (1994)

    Article  ADS  Google Scholar 

  32. I.D. Feranchuk, A.L. Tolstik, J. Phys. A Math. Gen. 32, 2115 (1999)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  33. M. Born, J.R. Oppenheimer, Ann. Phys. 84, 457 (1927)

    Article  MATH  Google Scholar 

  34. E. Borel, Ann. Sci. École Norm. Sup. 16, 9 (1899)

    MATH  MathSciNet  Google Scholar 

  35. G.H. Hardy, Divergent Series (Clarendon Press, Oxford, 1949)

    MATH  Google Scholar 

  36. O. Costin, Asymptotics and Borel Summability (CRC Press, Boca Raton, 2009)

    MATH  Google Scholar 

  37. J.J. Loeffel, A. Martin, B. Simon, A.S. Wightman, Phys. Lett. B 30, 656 (1969)

    Article  ADS  Google Scholar 

  38. S. Graffi, V. Grecchi, B. Simon, Phys. Lett. B 32, 631 (1970)

    Article  ADS  MathSciNet  Google Scholar 

  39. S. Graffi, V. Grecchi, G. Turchetti, Il Nuovo Cimento B 4, 313 (1971)

    Article  ADS  MathSciNet  Google Scholar 

  40. C.M. Bender, T.T. Wu, Phys. Rev. Lett. 27, 461 (1971)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Feranchuk, I., Ivanov, A., Le, VH., Ulyanenkov, A. (2015). Capabilities of Approximate Methods in Quantum Theory. In: Non-perturbative Description of Quantum Systems. Lecture Notes in Physics, vol 894. Springer, Cham. https://doi.org/10.1007/978-3-319-13006-4_1

Download citation

Publish with us

Policies and ethics