Precise Parameter Synthesis for Stochastic Biochemical Systems

  • Milan Češka
  • Frits Dannenberg
  • Marta Kwiatkowska
  • Nicola Paoletti
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8859)

Abstract

We consider the problem of synthesising rate parameters for stochastic biochemical networks so that a given time-bounded CSL property is guaranteed to hold, or, in the case of quantitative properties, the probability of satisfying the property is maximised/minimised. We develop algorithms based on the computation of lower and upper bounds of the probability, in conjunction with refinement and sampling, which yield answers that are precise to within an arbitrarily small tolerance value. Our methods are efficient and improve on existing approximate techniques that employ discretisation and refinement. We evaluate the usefulness of the methods by synthesising rates for two biologically motivated case studies, including the reliability analysis of a DNA walker.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Andreychenko, A., Mikeev, L., Spieler, D., Wolf, V.: Parameter Identification for Markov Models of Biochemical Reactions. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS, vol. 6806, pp. 83–98. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  2. 2.
    Aziz, A., Sanwal, K., Singhal, V., Brayton, R.: Verifying Continuous Time Markov Chains. In: Alur, R., Henzinger, T.A. (eds.) CAV 1996. LNCS, vol. 1102, pp. 269–276. Springer, Heidelberg (1996)CrossRefGoogle Scholar
  3. 3.
    Baier, C., Haverkort, B., Hermanns, H., Katoen, J.: Model-Checking Algorithms for Continuous-Time Markov Chains. IEEE Trans. on Soft. Eng. 29(6), 524–541 (2003)CrossRefGoogle Scholar
  4. 4.
    Bortolussi, L., Sanguinetti, G.: Learning and designing stochastic processes from logical constraints. In: Joshi, K., Siegle, M., Stoelinga, M., D’Argenio, P.R. (eds.) QEST 2013. LNCS, vol. 8054, pp. 89–105. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  5. 5.
    Bortolussi, L., Sanguinetti, G.: Smoothed model checking for uncertain continuous time markov chains. CoRR ArXiv, 1402.1450 (2014)Google Scholar
  6. 6.
    Brim, L., Češka, M., Dražan, S., Šafránek, D.: Exploring parameter space of stochastic biochemical systems using quantitative model checking. In: Sharygina, N., Veith, H. (eds.) CAV 2013. LNCS, vol. 8044, pp. 107–123. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  7. 7.
    Chen, T., Hahn, E.M., Han, T., Kwiatkowska, M., Qu, H., Zhang, L.: Model repair for Markov decision processes. In: Theoretical Aspects of Software Engineering (TASE), pp. 85–92. IEEE (2013)Google Scholar
  8. 8.
    Dannenberg, F., Hahn, E.M., Kwiatkowska, M.: Computing cumulative rewards using fast adaptive uniformisation. In: Gupta, A., Henzinger, T.A. (eds.) CMSB 2013. LNCS, vol. 8130, pp. 33–49. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  9. 9.
    Dannenberg, F., Kwiatkowska, M., Thachuk, C., Turberfield, A.: DNA walker circuits: Computational potential, design, and verification. Natural Computing (to appear, 2014)Google Scholar
  10. 10.
    Fox, B.L., Glynn, P.W.: Computing Poisson Probabilities. CACM 31(4), 440–445 (1988)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Gillespie, D.T.: Exact Stochastic Simulation of Coupled Chemical Reactions. Journal of Physical Chemistry 81(25), 2340–2381 (1977)CrossRefGoogle Scholar
  12. 12.
    Hahn, E.M., Hermanns, H., Zhang, L.: Probabilistic reachability for parametric Markov models. International Journal on Software Tools for Technology Transfer (STTT) 13(1), 3–19 (2011)CrossRefGoogle Scholar
  13. 13.
    Han, T., Katoen, J., Mereacre, A.: Approximate parameter synthesis for probabilistic time-bounded reachability. In: Real-Time Systems Symposium (RTSS), pp. 173–182. IEEE (2008)Google Scholar
  14. 14.
    Jha, S.K., Langmead, C.J.: Synthesis and infeasibility analysis for stochastic models of biochemical systems using statistical model checking and abstraction refinement. Theor. Comput. Sci. 412(21), 2162–2187 (2011)MathSciNetCrossRefMATHGoogle Scholar
  15. 15.
    Katoen, J.-P., Klink, D., Leucker, M., Wolf, V.: Three-valued abstraction for continuous-time markov chains. In: Damm, W., Hermanns, H. (eds.) CAV 2007. LNCS, vol. 4590, pp. 311–324. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  16. 16.
    Kermack, W.O., McKendrick, A.G.: Contributions to the mathematical theory of epidemics. ii. the problem of endemicity. Proceedings of the Royal Society of London. Series A 138(834), 55–83 (1932)CrossRefGoogle Scholar
  17. 17.
    Kwiatkowska, M., Norman, G., Parker, D.: Stochastic Model Checking. In: Bernardo, M., Hillston, J. (eds.) SFM 2007. LNCS, vol. 4486, pp. 220–270. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  18. 18.
    Kwiatkowska, M., Norman, G., Parker, D.: PRISM 4.0: Verification of Probabilistic Real-Time Systems. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS, vol. 6806, pp. 585–591. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  19. 19.
    Mateescu, M., Wolf, V., Didier, F., Henzinger, T.A.: Fast Adaptive Uniformization of the Chemical Master Equation. IET Systems Biology 4(6), 441–452 (2010)CrossRefGoogle Scholar
  20. 20.
    Sen, K., Viswanathan, M., Agha, G.: Model-checking markov chains in the presence of uncertainties. In: Hermanns, H., Palsberg, J. (eds.) TACAS 2006. LNCS, vol. 3920, pp. 394–410. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  21. 21.
    Češka, M., Dannenberg, F., Kwiatkowska, M., Paoletti, N.: Precise parameter synthesis for stochastic biochemical systems. Technical Report CS-RR-14-08, Department of Computer Science, University of Oxford (2014)Google Scholar
  22. 22.
    Wickham, S.F.J., Bath, J., Katsuda, Y., Endo, M., Hidaka, K., Sugiyama, H., Turberfield, A.J.: A DNA-based molecular motor that can navigate a network of tracks. Nature Nanotechnology 7, 169–173 (2012)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Milan Češka
    • 1
    • 2
  • Frits Dannenberg
    • 1
  • Marta Kwiatkowska
    • 1
  • Nicola Paoletti
    • 1
  1. 1.Department of Computer ScienceUniversity of OxfordUK
  2. 2.Faculty of InformaticsMasaryk UniversityCzech Republic

Personalised recommendations