Skip to main content

SAT-Based Metabolics Pathways Analysis without Compilation

  • Conference paper
Book cover Computational Methods in Systems Biology (CMSB 2014)

Part of the book series: Lecture Notes in Computer Science ((LNBI,volume 8859))

Included in the following conference series:

Abstract

Elementary flux modes (EFMs) are commonly accepted tools for metabolic network analysis under steady state conditions. They can be defined as the smallest sub-networks enabling the metabolic system to operate in steady state with all irreversible reactions proceeding in the appropriate direction. However, when networks are complex, the number of EFMs quickly leads to a combinatorial explosion, preventing from drawing even simple conclusions from their analysis. Since the concept of EFMs analysis was introduced in 1994, there has been an important and ongoing effort to develop more efficient algorithms. However, these methods share a common bottleneck: they enumerate all the EFMs which make the computation impossible when the metabolic network is large and only few works try to search only EFMs with specific properties. As we will show in this paper, enumerating all the EFMs is not necessary in many cases and it is possible to directly query the network instead with an appropriate tool. For ensuring a good query time, we will rely on a state of the art SAT solver, working on a propositional encoding of EFMs, and enriched with a simple SMT-like solver ensuring EFMs consistency with stoichiometric constraints. We illustrate our new framework by providing experimental evidences of almost immediate answer times on a non trivial metabolic network.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Audemard, G., Lagniez, J., Simon, L.: Just-in-time compilation of knowledge bases. In: 23rd International Joint Conference on Artificial Intelligence(IJCAI 2013), pp. 447–453 (August 2013)

    Google Scholar 

  2. Audemard, G., Simon, L.: Predicting learnt clauses quality in modern sat solvers. In: IJCAI (2009)

    Google Scholar 

  3. Ballerstein, K., von Kamp, A., Klamt, S., Haus, U.: Minimal cut sets in a metabolic network are elementary modes in a dual network. Bioinformatics 28(3), 381–387 (2012)

    Article  Google Scholar 

  4. Barrett, C., Sebastiani, R., Seshia, S.A., Tinelli, C.: Satisfiability Modulo Theories. In: Biere et al (eds.) [8], ch. 26, vol. 185, pp. 825–885 (February 2009)

    Google Scholar 

  5. Belov, A., Lynce, I., Marques-Silva, J.: Towards efficient mus extraction. AI Communications 25(2), 97–116 (2012)

    MathSciNet  MATH  Google Scholar 

  6. Biere, A.: Bounded Model Checking. In: Biere, et al. (eds.) [8] ch. 14, vol. 185, pp. 455–481 (2009)

    Google Scholar 

  7. Biere, A., Cimatti, A., Clarke, E., Zhu, Y.: Symbolic model checking without bdds (1999)

    Google Scholar 

  8. Biere, A., Heule, M., van Maaren, H., Walsh, T. (eds.): Handbook of Satisfiability. Frontiers in Artificial Intelligence and Applications, vol. 185. IOS Press (February 2009)

    Google Scholar 

  9. Bradley, A.R.: IC3 and beyond: Incremental, inductive verification. In: Madhusudan, P., Seshia, S.A. (eds.) CAV 2012. LNCS, vol. 7358, pp. 4–4. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  10. Darwiche, A., Marquis, P.: A knowledge compilation map. J. of AI Research, 229–264 (2002)

    Google Scholar 

  11. Davis, M., Logemann, G., Loveland, D.: A machine program for theorem proving. JACM 5, 394–397 (1962)

    MathSciNet  MATH  Google Scholar 

  12. Davis, M., Putnam, H.: A computing procedure for quantification theory. JACM 7, 201–215 (1960)

    Article  MathSciNet  MATH  Google Scholar 

  13. Eén, N., Sörensson, N.: An extensible SAT-solver. In: Giunchiglia, E., Tacchella, A. (eds.) SAT 2003. LNCS, vol. SAT, pp. 502–518. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  14. Gagneur, J., Klamt, S.: Computation of elementary modes : a unifying framework and the new binary approach. BMC Bioinformatics 5(175) (2004)

    Google Scholar 

  15. Jevremovic, D., Trinh, C., Srienc, F., Sosa, C.P., Boley, D.: Parallelization of nullspace algorithm for the computation of metabolic pathways. Parallel Computing 37(6-7), 261–278 (2011)

    Article  MATH  Google Scholar 

  16. Jol, S.J., Kümmel, A., Terzer, M., Stelling, J., Heinemann, M.: System-level insights into yeast metabolism by thermodynamic analysis of elementary flux modes. PLoS Computational Biology 8(3) (2012)

    Google Scholar 

  17. Jungreuthmayer, C., Ruckerbauer, D.E., Zanghellini, J.: Regefmtool: Speeding up elementary flux mode calculation using transcriptional regulatory rules in the form of three-state logic. Biosystems 113(1), 37–39 (2013)

    Article  Google Scholar 

  18. Kaleta, C., De Figueiredo, L.F., Schuster, S.: Can the whole be less than the sum of its parts? pathway analysis in genome-scale metabolic networks using elementary flux patterns. Genome Research 19, 1872–1883 (2009)

    Article  Google Scholar 

  19. Kautz, H., Selman, B.: Blackbox: A new approach to the application of theorem proving to problem solving. In: Working notes of the Workshop on Planning as Combinatorial Search, Held in Conjunction with AIPS 1998, pp. 58–60 (1998)

    Google Scholar 

  20. Klamt, S., Saez-Rodriguez, J., Gilles, E.: Structural and functional analysis of cellular networks with cellnetanalyzer. BMC Systems Biology 1(1), 2 (2007)

    Article  Google Scholar 

  21. Klamt, S., Stelling, J.: Combinatorial complexity of pathway anaysis in metabolic networks. Mol. Bio. Rep. 29, 233–236 (2002)

    Article  Google Scholar 

  22. Koshimura, M., Nabeshima, H., Fujita, H., Hasegawa, R.: Minimal model generation with respect to an atom set. In: International Workshop on First-Order Theorem Proving (2009)

    Google Scholar 

  23. Moskewicz, M., Madigan, C., Zhao, Y., Zhang, L., Malik, S.: Chaff: Engineering an efficient SAT solver. In: Proceedings of DAC, pp. 530–535 (2001)

    Google Scholar 

  24. Peres, S., Beurton-Aimar, M., Mazat, J.P.: Pathway classification of tca cycle. IEE Journal for Systems Biology 153(5), 369–371 (2006)

    Article  Google Scholar 

  25. Peres, S., Vallée, F., Beurton-Aimar, M., Mazat, J.P.: Acom: a classification method for elementary flux modes based on motif finding. Biosystems 103(3), 410–419 (2011)

    Article  Google Scholar 

  26. Sang, T., Bacchus, F., Beame, P., Kautz, H.A., Pitassi, T.: Combining component caching and clause learning for effective model counting. In: Proc. SAT (2004)

    Google Scholar 

  27. Schuster, S., Dandekar, T., Fell, D.A.: Detection of elementary modes in biochemical networks : A promising tool for pathway analysis and metabolic engineering. Trends Biotechnol. 17, 53–60 (1999)

    Article  Google Scholar 

  28. Schuster, S., Fell, D.A., Dandekar, T.: A general definition of metabolic pathways useful for systematic organization and analysis of complex metabolic networks. Nat. Biotechnol. 18, 326–332 (2000)

    Article  Google Scholar 

  29. Schuster, S., Hilgetag, C.: On elementary flux modes in biochemical reaction systems at steady state. Journal of Biological Systems 2(2), 165–182 (1994)

    Article  Google Scholar 

  30. Schwimmer, C., Lefebvre-Legendre, L., Rak, M., Devin, A., Slonimski, P., di Rago, J.P., Rigoulet, M.: Increasing mitochondrial substrate-level phosphorylation can rescue respiratory growth of an atp synthase-deficient yeast. J. Biol. Chem. 280(35), 30751–30759 (2005)

    Article  Google Scholar 

  31. Silva, J.P.M., Sakallah, K.A.: GRASP - a new search algorithm for satisfiability. In: Proceedings of ICCAD, pp. 220–227 (1996)

    Google Scholar 

  32. American Mathematical Society (ed.) Second DIMACS implementation challenge: cliques, coloring and satisfiability, vol. 26 (1996)

    Google Scholar 

  33. Soh, T., Inoue, K.: Identifying necessary reactions in metabolic pathways by minimal model generation. In: ECAI, pp. 277–282 (2010)

    Google Scholar 

  34. Soh, T., Inoue, K., Baba, T., Takada, T., Shiroishi, T.: Predicting gene knockout effects by minimal pathway enumeration. In: BIOTECHNO 2012 : The Fourth International Conference on Bioinformatics, Biocomputational Systems and Biotechnologies, pp. 11–19 (2012)

    Google Scholar 

  35. Stelling, J., Klamt, S., Bettenbrock, K., Schuster, S., Gilles, E.D.: Metabolic network structure determines key aspect of functionnality and regulation. Nature 420, 190–193 (2002)

    Article  Google Scholar 

  36. Terzer, M., Stelling, J.: Large-scale computation of elementary flux modes with bit pattern trees. Bioinformatics 24(19), 2229–2235 (2008)

    Article  Google Scholar 

  37. Tiwari, A., Talcott, C., Knapp, M., Lincoln, P., Laderoute, K.: Analyzing pathways using SAT-based approaches. In: Anai, H., Horimoto, K., Kutsia, T. (eds.) AB 2007. LNCS, vol. 4545, pp. 155–169. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  38. von Kamp, A., Klamt, S.: Enumeration of smallest intervention strategies in genome-scale metabolic networks. PLoS Comput Biol 10(1), e1003378 (2014)

    Google Scholar 

  39. von Kamp, A., Schuster, S.: Metatool 5.0: Fast and flexible elementary modes analysis. Bioinformatics 22, 1930–1931 (2006)

    Article  Google Scholar 

  40. Wieringa, S.: Incremental Satisfiability Solving and its Applications. PhD thesis, Aalto University (2014)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Peres, S., Morterol, M., Simon, L. (2014). SAT-Based Metabolics Pathways Analysis without Compilation. In: Mendes, P., Dada, J.O., Smallbone, K. (eds) Computational Methods in Systems Biology. CMSB 2014. Lecture Notes in Computer Science(), vol 8859. Springer, Cham. https://doi.org/10.1007/978-3-319-12982-2_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-12982-2_2

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-12981-5

  • Online ISBN: 978-3-319-12982-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics