Skip to main content

Towards Real-Time Control of Gene Expression at the Single Cell Level: A Stochastic Control Approach

  • Conference paper
Computational Methods in Systems Biology (CMSB 2014)

Abstract

Recent works have demonstrated the experimental feasibility of real-time gene expression control based on deterministic controllers. By taking control of the level of intracellular proteins, one can probe single-cell dynamics with unprecedented flexibility. However, single-cell dynamics are stochastic in nature, and a control framework explicitly accounting for this variability is presently lacking. Here we devise a stochastic control framework, based on Model Predictive Control, which fills this gap. Based on a stochastic modelling of the gene response dynamics, our approach combines a full state-feedback receding-horizon controller with a real-time estimation method that compensates for unobserved state variables. Using previously developed models of osmostress-inducible gene expression in yeast, we show in silico that our stochastic control approach outperforms deterministic control design in the regulation of single cells. The present new contribution leads to envision the application of the proposed framework to wetlab experiments on yeast.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bemporad, A., Morari, M.: Control of systems integrating logic, dynamics, and constraints. Automatica 35(3), 407–427 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  2. Carta, A., Cinquemani, E.: State estimation for gene networks with intrinsic and extrinsic noise: a case study on E.coli arabinose uptake dynamics. In: European Control Conference, ECC 2013, Zurich, Suisse, pp. 3658–3663 (2013)

    Google Scholar 

  3. Caruana, R., Niculescu-Mizil, A.: An empirical comparison of supervised learning algorithms. In: Proc. of the 23rd International Conference on Machine Learning, pp. 161–168. ACM (2006)

    Google Scholar 

  4. Ernst, D., Geurts, P., Wehenkel, L.: Tree-based batch mode reinforcement learning. Journal of Machine Learning Research, 503–556 (2005)

    Google Scholar 

  5. Espinoza, M., Suykens, J.A.K., De Moor, B.: Fixed-size least squares support vector machines: A large scale application in electrical load forecasting. Computational Management Science 3(2), 113–129 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  6. Gillespie, D.T.: A general method for numerically simulating the stochastic time evolution of coupled chemical reactions. Journal of Computational Physics 22(4), 403–434 (1976)

    Article  MathSciNet  Google Scholar 

  7. Gillespie, D.T.: The chemical Langevin equation. Journal of Chemical Physics 113(1), 297–306 (2000)

    Article  Google Scholar 

  8. Gonzalez, A.M., Uhlendorf, J., Cinquemani, E., Batt, G., Ferrari-Trecate, G.: Identification of biological models from single-cell data: A comparison between mixed-effects and moment-based inference. In: European Control Conference, ECC 2013, pp. 3652–3657 (2013)

    Google Scholar 

  9. Haesaert, S., Babuska, R., Abate, A.: Sampling-based approximations with quantitative performance for the probabilistic reach-avoid problem over general Markov processes. arXiv preprint, arXiv:1409.0553 (2014)

    Google Scholar 

  10. Kallenberg, O.: Foundations of modern probability. Probability and its Applications. Springer, New York (2002)

    Book  MATH  Google Scholar 

  11. Menolascina, F., Fiore, G., Orabona, E., De Stefano, L., Ferry, M., Hasty, J., di Bernardo, M., di Bernardo, D.: In-vivo real-time control of protein expression from endogenous and synthetic gene networks. PLoS Computational Biology 10(5), e1003625 (2014)

    Google Scholar 

  12. Milias-Argeitis, A., Summers, S., Stewart-Ornstein, J., Zuleta, I., Pincus, D., El-Samad, H., Khammash, M., Lygeros, J.: In silico feedback for in vivo regulation of a gene expression circuit. Nature Biotechnology 29, 1114–1116 (2011)

    Article  Google Scholar 

  13. Muzzey, D., Gómez-Uribe, C.A., Mettetal, J.T., van Oudenaarden, A.: A systems-level analysis of perfect adaptation in yeast osmoregulation. Cell 138(1), 160–171 (2009)

    Article  Google Scholar 

  14. Olson, E.J., Hartsough, L.L., Landry, B.P., Shroff, R., Tabor, J.J.: Characterizing bacterial gene circuit dynamics with optically programmed gene expression signals. Nature Methods 11, 449–455 (2014)

    Article  Google Scholar 

  15. Pelckmans, K., Suykens, J.A.K., Van Gestel, T., De Brabanter, J., Lukas, L., Hamers, B., De Moor, B., Vandewalle, J.: LS-SVMlab: a matlab/c toolbox for least squares support vector machines. Tutorial, Leuven, Belgium (2002)

    Google Scholar 

  16. Toettcher, J.E., Gong, D., Lim, W.A., Weiner, O.D.: Light-based feedback for controlling intracellular signaling dynamics. Nature Methods 8, 837–839 (2011)

    Article  Google Scholar 

  17. Uhlendorf, J., Bottani, S., Fages, F., Hersen, P., Batt, G.: Towards real-time control of gene expression: controlling the HOG signaling cascade. In: 16th Pacific Symposium of Biocomputing, pp. 338–349 (2011)

    Google Scholar 

  18. Uhlendorf, J., Miermont, A., Delaveau, T., Charvin, G., Fages, F., Bottani, S., Batt, G., Hersen, P.: Long-term model predictive control of gene expression at the population and single-cell levels. PNAS 109(35), 14271–14276 (2012)

    Article  Google Scholar 

  19. Wan, E.A., Van Der Merwe, R.: The unscented kalman filter for nonlinear estimation. In: Adaptive Systems for Signal Processing, Communications, and Control Symposium, AS-SPCC 2000, pp. 153–158. IEEE (2000)

    Google Scholar 

  20. Yang, X., Payne-Tobin Jost, A., Weiner, O.D., Tang, C.: A light-inducible organelle-targeting system for dynamically activating and inactivating signaling in budding yeast. Molecular Biology of the Cell 24(15), 2419–2430 (2013)

    Article  Google Scholar 

  21. Zechner, C., Ruess, J., Krenn, P., Pelet, S., Peter, M., Lygeros, J., Koeppl, H.: Moment-based inference predicts bimodality in transient gene expression. PNAS 109(21), 8340–8345 (2012)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Maruthi, L.R.M. et al. (2014). Towards Real-Time Control of Gene Expression at the Single Cell Level: A Stochastic Control Approach. In: Mendes, P., Dada, J.O., Smallbone, K. (eds) Computational Methods in Systems Biology. CMSB 2014. Lecture Notes in Computer Science(), vol 8859. Springer, Cham. https://doi.org/10.1007/978-3-319-12982-2_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-12982-2_12

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-12981-5

  • Online ISBN: 978-3-319-12982-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics