Skip to main content

On Defining and Computing “Good” Conservation Laws

  • Conference paper
Computational Methods in Systems Biology (CMSB 2014)

Part of the book series: Lecture Notes in Computer Science ((LNBI,volume 8859))

Included in the following conference series:

Abstract

Conservation laws are a key-tool to study systems of chemical reactions in biology. We address the problem of defining and computing “good” sets of conservation laws. In this article, we chose to focus on sparsest sets of conservation laws. We present a greedy algorithm computing a sparsest set of conservation laws equivalent to a given set of conservation laws. Benchmarks over a subset of the curated models taken from the BioModels database are given.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Biomodels database, http://www.ebi.ac.uk/biomodels-main/publmodels (accessed June 16, 2014)

  2. Berry, M.W., Heath, M.T., Kaneko, I., Lawo, M., Plemmons, R.J., Ward, R.C.: An algorithm to compute a sparse basis of the null space. Numerische Mathematik 47(4), 483–504 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  3. Coleman, T.F., Pothen, A.: The null space problem i. complexity. SIAM J. Algebraic Discrete Methods 7(4), 527–537 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  4. Coleman, T.F., Pothen, A.: The null space problem ii. algorithms. SIAM Journal on Algebraic Discrete Methods 8(4), 544–563 (1987)

    Article  MathSciNet  Google Scholar 

  5. Fieker, C., Stehlé, D.: Short bases of lattices over number fields. In: Hanrot, G., Morain, F., Thomé, E. (eds.) ANTS-IX. LNCS, vol. 6197, pp. 157–173. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  6. Granlund, T., the GMP development team: GNU MP: The GNU Multiple Precision Arithmetic Library, http://gmplib.org/

  7. Lenstra, A.K., Lenstra, H.W., Lovász, L.: Factoring Polynomials with Rational Coefficients. Afdeling Informatica: IW. Mathematisch Centrum, Afdeling Informatica (1982)

    Google Scholar 

  8. Panteleev, M.A., Ovanesov, M.V., Kireev, D.A., Shibeko, A.M., Sinauridze, E.I., Ananyeva, N.M., Butylin, A.A., Saenko, E.L., Ataullakhanov, F.I.: Spatial propagation and localization of blood coagulation are regulated by intrinsic and protein c pathways, respectively. Biophysical Journal 90(5), 1489–1500 (2006)

    Article  Google Scholar 

  9. Roman, S.: Advanced Linear Algebra. Graduate Texts in Mathematics. Springer (2007)

    Google Scholar 

  10. Sauro, H.M., Ingalls, B.: Conservation analysis in biochemical networks: computational issues for software writers. Biophysical Chemistry 109(1), 1–15 (2004)

    Article  Google Scholar 

  11. Schilling, C.H., Letscher, D., Palsson, B.Ø.: Theory for the Systemic Definition of Metabolic Pathways and their use in Interpreting Metabolic Function from a Pathway-Oriented Perspective. Journal of Theoretical Biology 203(3), 229–248 (2000)

    Article  Google Scholar 

  12. Schuster, S., Hilgetag, C.: On elementary flux modes in biochemical reaction systems at steady state. Journal of Biological Systems 2(2), 165–182 (1994)

    Article  Google Scholar 

  13. Soliman, S.: Invariants and Other Structural Properties of Biochemical Models as a Constraint Satisfaction Problem. Algorithms for Molecular Biology 7(1), 15 (2012)

    Article  Google Scholar 

  14. Vallabhajosyula, R.R., Chickarmane, V., Sauro, H.M.: Conservation analysis of large biochemical networks. Bioinformatics 22(3), 346–353 (2006)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Lemaire, F., Temperville, A. (2014). On Defining and Computing “Good” Conservation Laws. In: Mendes, P., Dada, J.O., Smallbone, K. (eds) Computational Methods in Systems Biology. CMSB 2014. Lecture Notes in Computer Science(), vol 8859. Springer, Cham. https://doi.org/10.1007/978-3-319-12982-2_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-12982-2_1

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-12981-5

  • Online ISBN: 978-3-319-12982-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics