Advertisement

On Defining and Computing “Good” Conservation Laws

  • François Lemaire
  • Alexandre Temperville
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8859)

Abstract

Conservation laws are a key-tool to study systems of chemical reactions in biology. We address the problem of defining and computing “good” sets of conservation laws. In this article, we chose to focus on sparsest sets of conservation laws. We present a greedy algorithm computing a sparsest set of conservation laws equivalent to a given set of conservation laws. Benchmarks over a subset of the curated models taken from the BioModels database are given.

Keywords

conservation analysis sparse conservation laws biological models sparse null space greedy algorithm 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Biomodels database, http://www.ebi.ac.uk/biomodels-main/publmodels (accessed June 16, 2014)
  2. 2.
    Berry, M.W., Heath, M.T., Kaneko, I., Lawo, M., Plemmons, R.J., Ward, R.C.: An algorithm to compute a sparse basis of the null space. Numerische Mathematik 47(4), 483–504 (1985)MathSciNetzbMATHCrossRefGoogle Scholar
  3. 3.
    Coleman, T.F., Pothen, A.: The null space problem i. complexity. SIAM J. Algebraic Discrete Methods 7(4), 527–537 (1986)MathSciNetzbMATHCrossRefGoogle Scholar
  4. 4.
    Coleman, T.F., Pothen, A.: The null space problem ii. algorithms. SIAM Journal on Algebraic Discrete Methods 8(4), 544–563 (1987)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Fieker, C., Stehlé, D.: Short bases of lattices over number fields. In: Hanrot, G., Morain, F., Thomé, E. (eds.) ANTS-IX. LNCS, vol. 6197, pp. 157–173. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  6. 6.
    Granlund, T., the GMP development team: GNU MP: The GNU Multiple Precision Arithmetic Library, http://gmplib.org/
  7. 7.
    Lenstra, A.K., Lenstra, H.W., Lovász, L.: Factoring Polynomials with Rational Coefficients. Afdeling Informatica: IW. Mathematisch Centrum, Afdeling Informatica (1982)Google Scholar
  8. 8.
    Panteleev, M.A., Ovanesov, M.V., Kireev, D.A., Shibeko, A.M., Sinauridze, E.I., Ananyeva, N.M., Butylin, A.A., Saenko, E.L., Ataullakhanov, F.I.: Spatial propagation and localization of blood coagulation are regulated by intrinsic and protein c pathways, respectively. Biophysical Journal 90(5), 1489–1500 (2006)CrossRefGoogle Scholar
  9. 9.
    Roman, S.: Advanced Linear Algebra. Graduate Texts in Mathematics. Springer (2007)Google Scholar
  10. 10.
    Sauro, H.M., Ingalls, B.: Conservation analysis in biochemical networks: computational issues for software writers. Biophysical Chemistry 109(1), 1–15 (2004)CrossRefGoogle Scholar
  11. 11.
    Schilling, C.H., Letscher, D., Palsson, B.Ø.: Theory for the Systemic Definition of Metabolic Pathways and their use in Interpreting Metabolic Function from a Pathway-Oriented Perspective. Journal of Theoretical Biology 203(3), 229–248 (2000)CrossRefGoogle Scholar
  12. 12.
    Schuster, S., Hilgetag, C.: On elementary flux modes in biochemical reaction systems at steady state. Journal of Biological Systems 2(2), 165–182 (1994)CrossRefGoogle Scholar
  13. 13.
    Soliman, S.: Invariants and Other Structural Properties of Biochemical Models as a Constraint Satisfaction Problem. Algorithms for Molecular Biology 7(1), 15 (2012)CrossRefGoogle Scholar
  14. 14.
    Vallabhajosyula, R.R., Chickarmane, V., Sauro, H.M.: Conservation analysis of large biochemical networks. Bioinformatics 22(3), 346–353 (2006)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • François Lemaire
    • 1
  • Alexandre Temperville
    • 1
  1. 1.LIFL, UMR CNRS 8022Université Lille 1LilleFrance

Personalised recommendations