Skip to main content

Group Delay Function from All-Pole Models for Musical Instrument Recognition

Part of the Lecture Notes in Computer Science book series (LNISA,volume 8905)

Abstract

In this work, the feature based on the group delay function from all-pole models (APGD) is proposed for pitched musical instrument recognition. Conventionally, the spectrum-related features take into account merely the magnitude information, whereas the phase is often overlooked due to the complications related to its interpretation. However, there is often additional information concealed in the phase, which could be beneficial for recognition. The APGD is an elegant approach to inferring phase information, which lacks of the issues related to interpreting the phase and does not require extensive parameter adjustment. Having shown applicability for speech-related problems, it is now explored in terms of instrument recognition. The evaluation is performed with various instrument sets and shows noteworthy absolute accuracy gains of up to 7 % compared to the baseline mel-frequency cepstral coefficients (MFCCs) case. Combined with the MFCCs and with feature selection, APGD demonstrates superiority over the baseline with all the evaluated sets.

Keywords

  • Musical instrument recognition
  • Music information retrieval
  • All-pole group delay feature
  • Phase spectrum

This research has been funded by the Academy of Finland, project numbers 258708, 253120 and 265024.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-319-12976-1_37
  • Chapter length: 13 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   84.99
Price excludes VAT (USA)
  • ISBN: 978-3-319-12976-1
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   109.99
Price excludes VAT (USA)
Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

References

  1. Agostini, G., Longari, M., Pollastri, E.: Musical instrument timbres classification with spectral features. In: IEEE Fourth Workshop on Multimedia Signal Processing, pp. 97–102 (2001)

    Google Scholar 

  2. Alsteris, L.D., Paliwal, K.K.: Short-time phase spectrum in speech processing: a review and some experimental results. Digital Signal Proc. 17(3), 578–616 (2007)

    CrossRef  Google Scholar 

  3. Banno, H., Lu, J., Nakamura, S., Shikano, K., Kawahara, H.: Efficient representation of short-time phase based on group delay. In: Proceedings of the 1998 IEEE International Conference on Acoustics, Speech and Signal Processing, vol. 2, pp. 861–864, May 1998

    Google Scholar 

  4. Bozkurt, B., Couvreur, L., Dutoit, T.: Chirp group delay analysis of speech signals. Speech Commun. 49, 159–176 (2007)

    CrossRef  Google Scholar 

  5. Diment, A., Heittola, T., Virtanen, T.: Semi-supervised learning for musical instrument recognition. In: 21st European Signal Processing Conference 2013 (EUSIPCO 2013). Marrakech, Morocco, Sep 2013

    Google Scholar 

  6. Diment, A., Padmanabhan, R., Heittola, T., Virtanen, T.: Modified group delay feature for musical instrument recognition. In: 10th International Symposium on Computer Music Multidisciplinary Research (CMMR). Marseille, France, Oct 2013

    Google Scholar 

  7. Duxbury, C., Davies, M., Sandler, M.: Separation of transient information in musical audio using multiresolution analysis techniques. In: Proceedings of the COST G-6 Conference on Digital Audio Effects (DAFX-01). Limerick, Ireland (2001)

    Google Scholar 

  8. Eronen, A.: Comparison of features for musical instrument recognition. In: 2001 IEEE Workshop on the Applications of Signal Processing to Audio and Acoustics, pp. 19–22 (2001)

    Google Scholar 

  9. Fletcher, N.H., Rossing, T.D.: The Physics of Musical Instruments. Springer, New York (1998)

    CrossRef  MATH  Google Scholar 

  10. Fuhrmann, F.: Automatic musical instrument recognition from polyphonic music audio signals. Ph.D. thesis, Universitat Pompeu Fabra (2012)

    Google Scholar 

  11. Giannoulis, D., Klapuri, A.: Musical instrument recognition in polyphonic audio using missing feature approach. IEEE Trans. Audio Speech Lang. Process. 21(9), 1805–1817 (2013)

    CrossRef  Google Scholar 

  12. Goto, M., Hashiguchi, H., Nishimura, T., Oka, R.: RWC music database: music genre database and musical instrument sound database. In: Proceedings of the 4th International Conference on Music Information Retrieval (ISMIR), pp. 229–230 (2003)

    Google Scholar 

  13. Hacihabiboglu, H., Canagarajah, N.: Musical instrument recognition with wavelet envelopes. In: Proceedings of Forum Acusticum Sevilla (CD-ROM) (2002)

    Google Scholar 

  14. He, X., Cai, D., Niyogi, P.: Laplacian score for feature selection. In: NIPS, vol. 186, p. 189 (2005)

    Google Scholar 

  15. Hegde, R., Murthy, H., Gadde, V.: Significance of the modified group delay feature in speech recognition. IEEE Trans. Audio Speech Lang. Process. 15(1), 190–202 (2007)

    CrossRef  Google Scholar 

  16. Jensen, K.: Timbre models of musical sounds: from the model of one sound to the model of one instrument. Report, Københavns Universitet (1999)

    Google Scholar 

  17. Kaminsky, I., Materka, A.: Automatic source identification of monophonic musical instrument sounds. In: Proceedings of IEEE International Conference on Neural Networks, IEEE, vol. 1, pp. 189–194 (1995)

    Google Scholar 

  18. Karjalainen, M., Hrm, A., Laine, U.K., Huopaniemi, J.: Warped filters and their audio applications. In: 1997 IEEE ASSP Workshop on Applications of Signal Processing to Audio and Acoustics, IEEE, pp. 4 (1997)

    Google Scholar 

  19. Klapuri, A.: Analysis of musical instrument sounds by source-filter-decay model. In: IEEE International Conference on Acoustics, Speech and Signal Processing. vol. 1, pp. I-53–I-56 (2007)

    Google Scholar 

  20. Kostek, B., Czyzewski, A.: Representing musical instrument sounds for their automatic classification. J. Audio Eng. Soc. 49(9), 768–785 (2001)

    Google Scholar 

  21. Makhoul, J.: Linear prediction: a tutorial review. Proc. IEEE 63(4), 561–580 (1975)

    CrossRef  Google Scholar 

  22. Marques, J., Moreno, P.J.: A study of musical instrument classification using gaussian mixture models and support vector machines. Cambridge Research Laboratory Technical Report Series CRL 4 (1999)

    Google Scholar 

  23. Meillier, J.L., Chaigne, A.: AR modeling of musical transients. In: 1991 International Conference on Acoustics, Speech, and Signal Processing. ICASSP-91, IEEE, pp. 3649–3652 (1991)

    Google Scholar 

  24. Murthy, H., Gadde, V.: The modified group delay function and its application to phoneme recognition. In: 2003 IEEE International Conference on Acoustics, Speech, and Signal Processing. Proceedings (ICASSP ’03), vol. 1, pp. I-68-71 (2003)

    Google Scholar 

  25. Rajan, P., Kinnunen, T., Hanili, C., Pohjalainen, J., Alku, P.: Using group delay functions from all-pole models for speaker recognition. Proc. Interspeech 2013, 2489–2493 (2013)

    Google Scholar 

  26. Sturm, B., Morvidone, M., Daudet, L.: Musical instrument identification using multiscale mel-frequency cepstral coefficients. In: Proceedings of the European Signal Processing Conference (EUSIPCO), pp. 477–481 (2010)

    Google Scholar 

  27. Yegnanarayana, B.: Formant extraction from linear-prediction phase spectra. J. Acoust. Soc. Am. 63(5), 1638–1640 (1978)

    CrossRef  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aleksandr Diment .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Diment, A., Rajan, P., Heittola, T., Virtanen, T. (2014). Group Delay Function from All-Pole Models for Musical Instrument Recognition. In: Aramaki, M., Derrien, O., Kronland-Martinet, R., Ystad, S. (eds) Sound, Music, and Motion. CMMR 2013. Lecture Notes in Computer Science(), vol 8905. Springer, Cham. https://doi.org/10.1007/978-3-319-12976-1_37

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-12976-1_37

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-12975-4

  • Online ISBN: 978-3-319-12976-1

  • eBook Packages: Computer ScienceComputer Science (R0)