Group Delay Function from All-Pole Models for Musical Instrument Recognition
- 1 Citations
- 1.5k Downloads
Abstract
In this work, the feature based on the group delay function from all-pole models (APGD) is proposed for pitched musical instrument recognition. Conventionally, the spectrum-related features take into account merely the magnitude information, whereas the phase is often overlooked due to the complications related to its interpretation. However, there is often additional information concealed in the phase, which could be beneficial for recognition. The APGD is an elegant approach to inferring phase information, which lacks of the issues related to interpreting the phase and does not require extensive parameter adjustment. Having shown applicability for speech-related problems, it is now explored in terms of instrument recognition. The evaluation is performed with various instrument sets and shows noteworthy absolute accuracy gains of up to 7 % compared to the baseline mel-frequency cepstral coefficients (MFCCs) case. Combined with the MFCCs and with feature selection, APGD demonstrates superiority over the baseline with all the evaluated sets.
Keywords
Musical instrument recognition Music information retrieval All-pole group delay feature Phase spectrumReferences
- 1.Agostini, G., Longari, M., Pollastri, E.: Musical instrument timbres classification with spectral features. In: IEEE Fourth Workshop on Multimedia Signal Processing, pp. 97–102 (2001)Google Scholar
- 2.Alsteris, L.D., Paliwal, K.K.: Short-time phase spectrum in speech processing: a review and some experimental results. Digital Signal Proc. 17(3), 578–616 (2007)CrossRefGoogle Scholar
- 3.Banno, H., Lu, J., Nakamura, S., Shikano, K., Kawahara, H.: Efficient representation of short-time phase based on group delay. In: Proceedings of the 1998 IEEE International Conference on Acoustics, Speech and Signal Processing, vol. 2, pp. 861–864, May 1998Google Scholar
- 4.Bozkurt, B., Couvreur, L., Dutoit, T.: Chirp group delay analysis of speech signals. Speech Commun. 49, 159–176 (2007)CrossRefGoogle Scholar
- 5.Diment, A., Heittola, T., Virtanen, T.: Semi-supervised learning for musical instrument recognition. In: 21st European Signal Processing Conference 2013 (EUSIPCO 2013). Marrakech, Morocco, Sep 2013Google Scholar
- 6.Diment, A., Padmanabhan, R., Heittola, T., Virtanen, T.: Modified group delay feature for musical instrument recognition. In: 10th International Symposium on Computer Music Multidisciplinary Research (CMMR). Marseille, France, Oct 2013Google Scholar
- 7.Duxbury, C., Davies, M., Sandler, M.: Separation of transient information in musical audio using multiresolution analysis techniques. In: Proceedings of the COST G-6 Conference on Digital Audio Effects (DAFX-01). Limerick, Ireland (2001)Google Scholar
- 8.Eronen, A.: Comparison of features for musical instrument recognition. In: 2001 IEEE Workshop on the Applications of Signal Processing to Audio and Acoustics, pp. 19–22 (2001)Google Scholar
- 9.Fletcher, N.H., Rossing, T.D.: The Physics of Musical Instruments. Springer, New York (1998)CrossRefzbMATHGoogle Scholar
- 10.Fuhrmann, F.: Automatic musical instrument recognition from polyphonic music audio signals. Ph.D. thesis, Universitat Pompeu Fabra (2012)Google Scholar
- 11.Giannoulis, D., Klapuri, A.: Musical instrument recognition in polyphonic audio using missing feature approach. IEEE Trans. Audio Speech Lang. Process. 21(9), 1805–1817 (2013)CrossRefGoogle Scholar
- 12.Goto, M., Hashiguchi, H., Nishimura, T., Oka, R.: RWC music database: music genre database and musical instrument sound database. In: Proceedings of the 4th International Conference on Music Information Retrieval (ISMIR), pp. 229–230 (2003)Google Scholar
- 13.Hacihabiboglu, H., Canagarajah, N.: Musical instrument recognition with wavelet envelopes. In: Proceedings of Forum Acusticum Sevilla (CD-ROM) (2002)Google Scholar
- 14.He, X., Cai, D., Niyogi, P.: Laplacian score for feature selection. In: NIPS, vol. 186, p. 189 (2005)Google Scholar
- 15.Hegde, R., Murthy, H., Gadde, V.: Significance of the modified group delay feature in speech recognition. IEEE Trans. Audio Speech Lang. Process. 15(1), 190–202 (2007)CrossRefGoogle Scholar
- 16.Jensen, K.: Timbre models of musical sounds: from the model of one sound to the model of one instrument. Report, Københavns Universitet (1999)Google Scholar
- 17.Kaminsky, I., Materka, A.: Automatic source identification of monophonic musical instrument sounds. In: Proceedings of IEEE International Conference on Neural Networks, IEEE, vol. 1, pp. 189–194 (1995)Google Scholar
- 18.Karjalainen, M., Hrm, A., Laine, U.K., Huopaniemi, J.: Warped filters and their audio applications. In: 1997 IEEE ASSP Workshop on Applications of Signal Processing to Audio and Acoustics, IEEE, pp. 4 (1997)Google Scholar
- 19.Klapuri, A.: Analysis of musical instrument sounds by source-filter-decay model. In: IEEE International Conference on Acoustics, Speech and Signal Processing. vol. 1, pp. I-53–I-56 (2007)Google Scholar
- 20.Kostek, B., Czyzewski, A.: Representing musical instrument sounds for their automatic classification. J. Audio Eng. Soc. 49(9), 768–785 (2001)Google Scholar
- 21.Makhoul, J.: Linear prediction: a tutorial review. Proc. IEEE 63(4), 561–580 (1975)CrossRefGoogle Scholar
- 22.Marques, J., Moreno, P.J.: A study of musical instrument classification using gaussian mixture models and support vector machines. Cambridge Research Laboratory Technical Report Series CRL 4 (1999)Google Scholar
- 23.Meillier, J.L., Chaigne, A.: AR modeling of musical transients. In: 1991 International Conference on Acoustics, Speech, and Signal Processing. ICASSP-91, IEEE, pp. 3649–3652 (1991)Google Scholar
- 24.Murthy, H., Gadde, V.: The modified group delay function and its application to phoneme recognition. In: 2003 IEEE International Conference on Acoustics, Speech, and Signal Processing. Proceedings (ICASSP ’03), vol. 1, pp. I-68-71 (2003)Google Scholar
- 25.Rajan, P., Kinnunen, T., Hanili, C., Pohjalainen, J., Alku, P.: Using group delay functions from all-pole models for speaker recognition. Proc. Interspeech 2013, 2489–2493 (2013)Google Scholar
- 26.Sturm, B., Morvidone, M., Daudet, L.: Musical instrument identification using multiscale mel-frequency cepstral coefficients. In: Proceedings of the European Signal Processing Conference (EUSIPCO), pp. 477–481 (2010)Google Scholar
- 27.Yegnanarayana, B.: Formant extraction from linear-prediction phase spectra. J. Acoust. Soc. Am. 63(5), 1638–1640 (1978)CrossRefGoogle Scholar