Skip to main content

On the Statistical Determination of Yield Strength, Ultimate Strength, and Endurance Limit of a Particle Reinforced Metal Matrix Composite (PRMMC)

  • Chapter
  • First Online:
Direct Methods for Limit and Shakedown Analysis of Structures

Abstract

In this paper we present a numerical methodology to determine the load bearing capacity of a random heterogeneous material. It is applied to a particulate reinforced metal matrix composite (PRMMC), WC-30 Wt.% Co, to predict its strength against both monotonic and cyclic loads. In this approach, limit and shakedown analysis based on Melan’s static theorem [30] is performed on representative volume element (RVE) models generated from real material microstructure and the obtained results are converted to macroscopic load domains through homogenization. To evaluate microstructure’s impact on the overall material strength, the relationship between strength and composite structure is investigated by means of statistics. Meanwhile, several numerical issues, e.g. the impact of RVE’s size, mesh density, as well as the discrepancy between 2D and 3D models, are studied.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. ABAQUS (2012) ABAQUS/CAE user’s manual: version 6.12. Simulia, Dassault Systèmes

    Google Scholar 

  2. Akoa F, Hachemi A, An L, Said M, Tao P (2007) Application of lower bound direct method to engineering structures. J Glob Optim 37(4):609–630

    Article  MATH  Google Scholar 

  3. Barrera O, Cocks A, Ponter A (2011) The linear matching method applied to composite materials: a micromechanical approach. Compos Sci Technol 71(6):797–804

    Article  MathSciNet  Google Scholar 

  4. Bisbos C, Makrodimopoulos A, Pardalos P (2005) Second-order cone programming approaches to static shakedown analysis in steel plasticity. Optim Methods Softw 20(1):25–52

    Article  MATH  MathSciNet  Google Scholar 

  5. Böhm HJ, Eckschlager A, Han W (2002) Multi-inclusion unit cell models for metal matrix composites with randomly oriented discontinuous reinforcements. Comput Mater Sci 25(1):42–53

    Google Scholar 

  6. Carvelli V (2004) Shakedown analysis of unidirectional fiber reinforced metal matrix composites. Comput Mater Sci 31(1–2):24–32

    Article  Google Scholar 

  7. Chawla N, Habel U, Shen YL, Andres C, Jones J, Allison J (2000) The effect of matrix microstructure on the tensile and fatigue behavior of SiC particle-reinforced 2080 Al matrix composites. Metall Mater Trans A 31(2):531–540

    Article  Google Scholar 

  8. Chen G, Ozden U, Bezold A, Broeckmann C (2013) A statistics based numerical investigation on the prediction of elasto-plastic behavior of WC-Co hard metal. Comput Mater Sci 80:96–103

    Article  Google Scholar 

  9. Chen H, Ponter A (2005) On the behaviour of a particulate metal matrix composite subjected to cyclic temperature and constant stress. Comput Mater Sci 34(4):425–441

    Article  Google Scholar 

  10. Chen M, Hachemi A (2014) Progress in plastic design of composites. In: Spiliopoulos K, Weichert D (eds) Direct methods for limit states in structures and materials. Springer, Netherlands, pp 119–138

    Chapter  Google Scholar 

  11. Chen M, Hachemi A, Weichert D (2013) Shakedown and optimization analysis of periodic composites. In: Saxcé G, Oueslati A, Charkaluk E, Tritsch JB (eds) Limit state of materials and structures. Springer, Netherlands, pp 45–69

    Chapter  Google Scholar 

  12. Van Dang K, Griveau B, Message O (1989) On a new multiaxial fatigue limit criterion: theory and application. In: Brown M, Miller K (eds) Biaxial and multiaxial fatigue, EGF 3. Mechanical Engineering Publication, London, pp 479–496

    Google Scholar 

  13. Drucker D (1963) On the macroscopic theory of inelastic stress-strain-time-temperature behavior. In: AGARD advances in material researchs in the NATO Nations, pp 193–221

    Google Scholar 

  14. Drugan W, Willis J (1996) A micromechanics-based nonlocal constitutive equation and estimates of representative volume element size for elastic composites. J Mech Phys Solids 44(4):497–524

    Article  MATH  MathSciNet  Google Scholar 

  15. El-Bakry A, Tapia R, Tsuchiya T, Zhang Y (1996) On the formulation and theory of the Newton interior-point method for nonlinear programming. J Optim Theory Appl 89(3):507–541

    Article  MATH  MathSciNet  Google Scholar 

  16. Fleming W, Temis J (2002) Numerical simulation of cyclic plasticity and damage of an aluminium metal matrix composite with particulate SiC inclusions. Int J Fatigue 24(10):1079–1088

    Google Scholar 

  17. Friend C (1987) The effect of matrix properties on reinforcement in short alumina fibre-aluminium metal matrix composites. J Mater Sci 22(8):3005–3010

    Article  Google Scholar 

  18. Garcea G, Leonetti L (2009) Numerical methods for the evaluation of the shakedown and limit loads. In: 7th EUROMECH solid mechanics conference, Lisbon, Portugal

    Google Scholar 

  19. Gurobi Optimization I (2014) Gurobi optimizer reference manual. http://www.gurobi.com

  20. Ibrahim I, Mohamed F, Lavernia E (1991) Particulate reinforced metal matrix composites—a review. J Mater Sci 26(5):1137–1156

    Article  Google Scholar 

  21. Kanit T, Forest S, Galliet I, Mounoury V, Jeulin D (2003) Determination of the size of the representative volume element for random composites: statistical and numerical approach. Int J Solids Struct 40(13):3647–3679

    Article  MATH  Google Scholar 

  22. Karmarkar N (1984) A new polynomial-time algorithm for linear programming. In: Proceedings of the 16th annual ACM symposium on theory of computing. ACM, pp 302–311

    Google Scholar 

  23. Koiter W (1956) A new general theorem on shake-down of elastic-plastic structures. In: Proceeding of eighth international congress of applied mechanics, pp 220–230

    Google Scholar 

  24. König J (1987) Shakedown of elastic-plastic structures. Fundamental Studies in Engineering. Elsevier, Warsaw

    Google Scholar 

  25. Krabbenhoft K, Lyamin A, Sloan S, Wriggers P (2007) An interior-point algorithm for elastoplasticity. Int J Numer Methods Eng 69(3):592–626

    Article  MATH  MathSciNet  Google Scholar 

  26. Li H (2013) A microscopic nonlinear programming approach to shakedown analysis of cohesivefrictional composites. Compos Part B-Eng 50:32–43

    Article  Google Scholar 

  27. Magoariec H, Bourgeois S, Débordes O (2004) Elastic plastic shakedown of 3D periodic heterogeneous media: a direct numerical approach. Int J Plast 20(8–9):1655–1675

    Article  MATH  Google Scholar 

  28. Maier G (2001) On some issues in shakedown analysis. J Appl Mech 68(5):799–808

    Article  MATH  Google Scholar 

  29. MATLAB (2010) Version 7.10.0 (R2010a). The MathWorks Inc, Natick

    Google Scholar 

  30. Melan E (1938) Zur Plastizität des räumlichen Kontinuums. Arch Appl Mech 9(2):116–126

    MATH  Google Scholar 

  31. Nguyen AD, Hachemi A, Weichert D (2008) Application of the interior-point method to shakedown analysis of pavements. Int J Numer Methods Eng 75(4):414–439

    Article  MATH  Google Scholar 

  32. Ozden UA, Chen G, Bezold A, Broeckmann C (2014) Numerical investigation on the size effect of a WC/Co 3D representative volume element based on the homogenized elasto-plastic response and fracture energy dissipation. Key Eng Mater 592:153–156

    Article  Google Scholar 

  33. Pastor F, Loute E (2005) Solving limit analysis problems: an interior-point method. Commun Numer Methods Eng 21(11):631–642

    Article  MATH  MathSciNet  Google Scholar 

  34. Sadowski T, Nowicki T (2008) Numerical investigation of local mechanical properties of WC/Co composite. Comput Mater Sci 43(1):235–241

    Article  Google Scholar 

  35. Schwabe F (2000) Einspieluntersuchungen von Verbundwerkstoffen mit periodischer Mikrostruktur. PhD thesis, RWTH Aachen

    Google Scholar 

  36. Segurado J, Llorca J (2002) A numerical approximation to the elastic properties of sphere-reinforced composites. J Mech Phys Solids 50(10):2107–2121

    Article  MATH  Google Scholar 

  37. Simon JW, Weichert D (2011) Numerical lower bound shakedown analysis of engineering structures. Comput Methods Appl Mech 200(41):2828–2839

    Article  MATH  MathSciNet  Google Scholar 

  38. Suquet P (1987) Homogenization techniques for composite media. In: Sanchez-Palencia E, Zaoui A (eds) Introduction, Lecture Notes in Physics, vol 272. Springer, Berlin, pp 193–198

    Google Scholar 

  39. Swaminathan S, Ghosh S, Pagano N (2006) Statistically equivalent representative volume elements for unidirectional composite microstructures: part I-without damage. J Compos Mater 40(7):583–604

    Article  Google Scholar 

  40. Torquato S (2002) Random heterogeneous materials: microstructure and macroscopic properties. Springer, New York

    Book  Google Scholar 

  41. Wächter A, Biegler L (2006) On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Math Program 106(1):25–57

    Article  MATH  MathSciNet  Google Scholar 

  42. Weichert D, Hachemi A, Schwabe F (1999) Application of shakedown analysis to the plastic design of composites. Arch Appl Mech 69(9–10):623–633

    Article  MATH  Google Scholar 

  43. Wright M (2005) The interior-point revolution in optimization: history, recent developments, and lasting consequences. Bull Am Math Soc 42(1):39–56

    Article  MATH  Google Scholar 

  44. You JH, Kim B, Miskiewicz M (2009) Shakedown analysis of fibre-reinforced copper matrix composites by direct and incremental approaches. Mech Mater 41(7):857–867

    Article  Google Scholar 

  45. Zhang H, Liu Y, Xu B (2009) Plastic limit analysis of ductile composite structures from micro- to macro-mechanical analysis. Acta Mech Solida Sin 22(1):73–84

    Article  MathSciNet  Google Scholar 

  46. Zohdi T, Wriggers P (2008) An introduction to computational micromechanics. Springer, New York

    Google Scholar 

  47. Zouain N, Borges L, Silveira JL (2002) An algorithm for shakedown analysis with nonlinear yield functions. Comput Methods Appl Mech 191(23–24):2463–2481

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Geng Chen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Chen, G., Ozden, U.A., Bezold, A., Broeckmann, C., Weichert, D. (2015). On the Statistical Determination of Yield Strength, Ultimate Strength, and Endurance Limit of a Particle Reinforced Metal Matrix Composite (PRMMC). In: Fuschi, P., Pisano, A., Weichert, D. (eds) Direct Methods for Limit and Shakedown Analysis of Structures. Springer, Cham. https://doi.org/10.1007/978-3-319-12928-0_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-12928-0_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-12927-3

  • Online ISBN: 978-3-319-12928-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics