Advertisement

Human-Robot Interaction in Public and Smart Spaces

  • Dylan F. Glas
  • Koji Kamei
  • Takayuki Kanda
  • Takahiro Miyashita
  • Norihiro Hagita
Part of the Springer Tracts in Advanced Robotics book series (STAR, volume 106)

Abstract

We have developed a “network robot system” framework with the objective of enabling practical deployment of social robots to provide real-world services in everyday social environments. This framework addresses practical issues in social human-robot interaction by integrating ambient intelligence systems, networked data stores, human supervisors, and centralized planning. All of the elements of the system have been developed and tested in public and commercial spaces such as shopping malls, resulting in a flexible robot control architecture based on practical, real-world requirements. We describe several elements of the system and demonstrate examples of its use in five years of real-world field deployments and research. Finally, we present the Ubiquitous Network Robot Platform (UNR-PF), an internationally-standardized high-level architecture for service robots based on our framework.

Keywords

network robot systems human-robot interaction ambient intelligence cloud robotics ubiquitous computing 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ball, G., Hall, D.: Isodata, a novel method of data analysis and pattern classification. Technical report, DTIC Document (1965)Google Scholar
  2. 2.
    Brooks, A., Williams, S.: Tracking people with networks of heterogeneous sensors. In: Australasian Conference on Robotics and Automation (ACRA 2003), Brisbane QLD, Australia, December 1-3, pp. 1–7 (2003)Google Scholar
  3. 3.
    Brščić, D., Kanda, T., Ikeda, T., Miyashita, T.: Person tracking in large public spaces using 3-d range sensors. IEEE Transactions on Human-Machine Systems PP(99), 1–13 (2013)Google Scholar
  4. 4.
    Burgard, W., Cremers, A.B., Fox, D., Hahnel, D., Lakemeyer, G., Schulz, D., Steiner, W., Thrun, S.: The interactive museum tour-guide robot. In: Proceedings of the Fifteenth National/Tenth Conference on Artificial Intelligence/Innovative Applications of Artificial Intelligence, Madison, Wisconsin, United States, pp. 11–18. American Association for Artificial Intelligence (1998)Google Scholar
  5. 5.
    Cui, J., Zhao, H., Shibasaki, R.: Fusion of detection and matching based approaches for laser based multiple people tracking. In: Proc. of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR 2006), New York, USA, pp. 642–649 (2006)Google Scholar
  6. 6.
    Garrell, A., Sanfeliu, A.: Model validation: Robot behavior in people guidance mission using dtm model and estimation of human motion behavior. In: 2010 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 5836–5841 (2010)Google Scholar
  7. 7.
    Glas, D.F., Kanda, T., Ishiguro, H., Hagita, N.: Simultaneous people tracking and localization for social robots using external laser range finders. In: IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS 2009, St. Louis, MO, USA, pp. 846–853. IEEE Press (2009)Google Scholar
  8. 8.
    Glas, D.F., Kanda, T., Ishiguro, H., Hagita, N.: Teleoperation of multiple social robots. IEEE Transactions on Systems, Man and Cybernetics, Part A: Systems and Humans 42(3), 530–544 (2012)CrossRefGoogle Scholar
  9. 9.
    Glas, D.F., Miyashita, T., Ishiguro, H., Hagita, N.: Laser-based tracking of human position and orientation using parametric shape modeling. Advanced Robotics 23(4), 405–428 (2009)CrossRefGoogle Scholar
  10. 10.
    Glas, D.F., Satake, S., Ferreri, F., Kanda, T., Ishiguro, H., Hagita, N.: The network robot system: Enabling social human-robot interaction in public spaces. Journal of Human-Robot Interaction 1(2), 5–32 (2012)Google Scholar
  11. 11.
    Gockley, R., Forlizzi, J., Simmons, R.: Interactions with a moody robot. In: Proceedings of the 1st ACM SIGCHI/SIGART Conference on Human-Robot Interaction, Salt Lake City, Utah, USA, pp. 186–193. ACM (2006)Google Scholar
  12. 12.
    Hayashi, K., Shiomi, M., Kanda, T., Hagita, N.: Friendly patrolling: A model of natural encounters. In: Robotics: Science and Systems VII, Los Angeles, CA. MIT Press (MA) (2012)Google Scholar
  13. 13.
    Iwamura, Y., Shiomi, M., Kanda, T., Ishiguro, H., Hagita, N.: Do elderly people prefer a conversational humanoid as a shopping assistant partner in supermarkets?. In: Proceedings of the 6th International Conference on Human-Robot Interaction, Lausanne, Switzerland, pp. 449–456. ACM (2011)Google Scholar
  14. 14.
    Kamei, K., Nishio, S., Hagita, N., Sato, M.: Cloud networked robotics. IEEE Network 26(3), 28–34 (2012)CrossRefGoogle Scholar
  15. 15.
    Kanda, T., Glas, D.F., Shiomi, M., Hagita, N.: Abstracting people’s trajectories for social robots to proactively approach customers. IEEE Transactions on Robotics 25(6), 1382–1396 (2009)CrossRefGoogle Scholar
  16. 16.
    Kanda, T., Hirano, T., Eaton, D., Ishiguro, H.: Interactive robots as social partners and peer tutors for children: A field trial. Human-Computer Interaction 19(1), 61–84 (2004)CrossRefGoogle Scholar
  17. 17.
    Kanda, T., Ishiguro, H., Imai, M., Ono, T.: Development and evaluation of interactive humanoid robots. Proceedings of the IEEE 92(11), 1839–1850 (2004)CrossRefGoogle Scholar
  18. 18.
    Kanda, T., Shiomi, M., Miyashita, Z., Ishiguro, H., Hagita, N.: An affective guide robot in a shopping mall. In: Proceedings of the 4th ACM/IEEE International Conference on Human Robot Interaction, La Jolla, California, USA, pp. 173–180. ACM (2009)Google Scholar
  19. 19.
    Kanda, T., Shiomi, M., Perrin, L., Nomura, T., Ishiguro, H., Hagita, N.: Analysis of people trajectories with ubiquitous sensors in a science museum. In: 2007 IEEE International Conference on Robotics and Automation, pp. 4846–4853. IEEE (2007)Google Scholar
  20. 20.
    Kawai, H., Toda, T., Ni, J., Tsuzaki, M., Tokuda, K.: Ximera: A new tts from atr based on corpus-based technologies. In: Fifth ISCA Workshop on Speech Synthesis (2004)Google Scholar
  21. 21.
    Mazzolai, B., Mattoli, V., Laschi, C., Salvini, P., Ferri, G., Ciaravella, G., Dario, P.: Networked and cooperating robots for urban hygiene: The eu funded dustbot project. In: Proceedings of the 5th International Conference on Ubiquitous Robots and Ambient Intelligence, URAI (2008)Google Scholar
  22. 22.
    Mutlu, B., Forlizzi, J.: Robots in organizations: the role of workflow, social, and environmental factors in human-robot interaction. In: Proceedings of the 3rd ACM/IEEE International Conference on Human Robot Interaction, Amsterdam, The Netherlands, pp. 287–294. ACM (2008)Google Scholar
  23. 23.
    Quintas, J., Menezes, P., Dias, J.: Cloud robotics: Towards context aware robotic networks. In: Proc. of the 16th IASTED International Conference on Robotics, Pittsburgh, USAGoogle Scholar
  24. 24.
    Sakoe, H., Chiba, S.: Dynamic programming algorithm optimization for spoken word recognition. IEEE Transactions on Acoustics, Speech and Signal Processing 26(1), 43–49 (1978)CrossRefzbMATHGoogle Scholar
  25. 25.
    Sanfeliu, A., Hagita, N., Saffiotti, A.: Special issue: Network robot systems. Robotics and Autonomous Systems 56(10), 791–791 (2008)CrossRefGoogle Scholar
  26. 26.
    Satake, S., Kanda, T., Glas, D.F., Imai, M., Ishiguro, H., Hagita, N.: How to approach humans?: Strategies for social robots to initiate interaction. In: Proceedings of the 4th ACM/IEEE International Conference on Human Robot Interaction, La Jolla, California, USA, pp. 109–116. ACM (2009)Google Scholar
  27. 27.
    Schulz, D., Burgard, W., Fox, D., Cremens, A.B.: People tracking with mobile robots using sample-based joint probabilistic data association filters. International Journal of Robotics Research (IJRR) 22(2), 99–116 (2003)CrossRefGoogle Scholar
  28. 28.
    Shiomi, M., Kanda, T., Glas, D.F., Satake, S., Ishiguro, H., Hagita, N.: Field trial of networked social robots in a shopping mall. In: IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS 2009, St. Louis, MO, USA, pp. 2846–2853. IEEE Press (2009)Google Scholar
  29. 29.
    Shiomi, M., Kanda, T., Ishiguro, H., Hagita, N.: Interactive humanoid robots for a science museum. IEEE Intelligent Systems 22(2), 25–32 (2007)CrossRefGoogle Scholar
  30. 30.
    Shiwa, T., Kanda, T., Imai, M., Ishiguro, H., Hagita, N.: How quickly should communication robots respond? In: Proceedings of the 3rd ACM/IEEE International Conference on Human Robot Interaction, Amsterdam, The Netherlands, pp. 153–160. ACM (2008)Google Scholar
  31. 31.
    Siegwart, R., Arras, K.O., Bouabdallah, S., Burnier, D., Froidevaux, G., Greppin, X., Jensen, B., Lorotte, A., Mayor, L., Meisser, M., Philippsen, R., Piguet, R., Ramel, G., Terrien, G., Tomatis, N.: Robox at expo.02: A large-scale installation of personal robots. Robotics and Autonomous Systems 42(3), 203–222 (2003)CrossRefzbMATHGoogle Scholar
  32. 32.
    Sisbot, E.A., Alami, R., Simeon, T., Dautenhahn, K., Walters, M., Woods, S.: Navigation in the presence of humans. In: 2005 5th IEEE-RAS International Conference on Humanoid Robots, pp. 181–188 (2005)Google Scholar
  33. 33.
    Sugiyama, O., Kanda, T., Imai, M., Ishiguro, H., Hagita, N., Anzai, Y.: Humanlike conversation with gestures and verbal cues based on a three-layer attention-drawing model. Connection Science 18(4), 379–402 (2006)CrossRefGoogle Scholar
  34. 34.
    Takayama, L., Marder-Eppstein, E., Harris, H., Beer, J.M.: Assisted driving of a mobile remote presence system: System design and controlled user evaluation. In: 2011 IEEE International Conference on Robotics and Automation (ICRA), pp. 1883–1889 (2011)Google Scholar
  35. 35.
    Tenorth, M., Kamei, K., Satake, S., Miyashita, T., Hagita, N.: Building knowledge-enabled cloud robotics applications using the ubiquitous network robot platform. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2013), pp. 5716–5721 (2013)Google Scholar
  36. 36.
    Tomizawa, T., Ohya, A., Yuta, S.: Remote shopping robot system - development of a hand mechanism for grasping fresh foods in a supermarket. In: 2006 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 4953–4958 (2006)Google Scholar
  37. 37.
    Villagrasa, A.M.: People tracking for a personal robot. Master’s thesis, Royal Institute of Technology, Stockholm, Sweden (August 2005)Google Scholar
  38. 38.
    Waibel, M., Beetz, M., Civera, J., D’Andrea, R., Elfring, J., Galvez-Lopez, D., Haussermann, K., Janssen, R., Montiel, J., Perzylo, A.: Roboearth. IEEE Robotics and Automation Magazine 18(2), 69–82 (2011)CrossRefGoogle Scholar
  39. 39.
    Zhao, H., Shibasaki, R.: A novel system for tracking pedestrians using multiple singlerow laser-range scanners. IEEE Transactions on Systems, Man, and Cybernetics 35(2), 283–291 (2005)CrossRefGoogle Scholar
  40. 40.
    Zhihui, D., Weiqiang, Y., Yinong, C., Xin, S., Xiaoying, W., Chen, X.: Design of a robot cloud center. In: 2011 10th International Symposium on Autonomous Decentralized Systems (ISADS), pp. 269–275 (2011)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Dylan F. Glas
    • 1
  • Koji Kamei
    • 1
  • Takayuki Kanda
    • 1
  • Takahiro Miyashita
    • 1
  • Norihiro Hagita
    • 1
  1. 1.ATR Intelligent Robotics and Communication LaboratoriesKyotoJapan

Personalised recommendations