Skip to main content

Fluorescent Proteins for Neuronal Imaging

  • Chapter
  • First Online:
New Techniques in Systems Neuroscience

Abstract

Over the past two decades, the growing selection of engineered fluorescent proteins have helped drive a revolution in the ability of researchers to image protein localization and biochemical dynamics in live cells in real time. Although the fluorescent proteins were long preceded by other fluorophores compatible with live cell imaging, the fact that fluorescent proteins are fully genetically encoded has enabled them to be applied in applications that would not otherwise be possible. In particular, fluorescent proteins have enabled the creation of transgenic animals in which specific neuronal cell types are uniquely and fluorescently labeled. Furthermore, through the use of highly engineered fluorescent proteins that change their fluorescence in response to a change in calcium ion concentration or membrane potential, fluorescent proteins have enabled high resolution minimally invasive imaging of neuronal activity in model organisms. In this chapter we will provide an overview of fluorescent protein technology and detail the technological developments that have made such experiments possible. Particular emphasis will be placed on the development of strategies for engineering Ca2+ and voltage indicators, and the latest breakthroughs in these directions will be highlighted.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Shimomura, O., Johnson, F. H., & Saiga, Y. (1962). Extraction, purification and properties of aequorin, a bioluminescent protein from luminous hydromedusan, Aequorea. Journal of Cellular and Comparative Physiology, 59, 223–239.

    Google Scholar 

  2. Yang, F., Moss, L. G., & Phillips, G. N. J. (1996). The molecular structure of green fluorescent protein. Nature Biotechnology, 14, 1246–1251.

    Google Scholar 

  3. Ormö, M., Cubitt, A. B., Kallio, K., et al. (1996). Crystal structure of the Aequorea victoria green fluorescent protein. Science, 273, 1392–1395.

    ADS  Google Scholar 

  4. Tsien, R. Y. (1998). The green fluorescent protein. Annual Review of Biochemistry, 67, 509–544.

    Google Scholar 

  5. Chalfie, M., Tu, Y., Euskirchen, G., et al. (1994). Green fluorescent protein as a marker for gene-expression. Science, 263, 802–805.

    ADS  Google Scholar 

  6. Inouye, S., & Tsuji, F. I. (1994). Aequorea green fluorescent protein expression of the gene and fluorescence characteristics of the recombinant protein. FEBS Letters, 341, 277–280.

    Google Scholar 

  7. Cormack, B. P., Valdivia, R. H., & Falkow, S. (1996). FACS-optimized mutants of the green fluorescent protein (GFP). Gene, 173, 33–38.

    Google Scholar 

  8. Crameri, A., Whitehorn, E. A., Tate, E., & Stemmer, W. P. (1996). Improved green fluorescent protein by molecular evolution using DNA shuffling. Nature Biotechnology, 14, 315–319.

    Google Scholar 

  9. Heim, R., Cubitt, A. B., & Tsien, R. Y. (1995). Improved green fluorescence. Nature, 373, 663–664.

    ADS  Google Scholar 

  10. Mishin, A. S., Subach, F. V., Yampolsky, I. V., et al. (2008). The first mutant of the Aequorea victoria green fluorescent protein that forms a red chromophore. Biochemistry, 47, 4666–4673.

    Google Scholar 

  11. Matz, M. V., Fradkov, A. F., Labas, Y. A., et al. (1999). Fluorescent proteins from nonbioluminescent Anthozoa species. Nature Biotechnology, 17, 969–973.

    Google Scholar 

  12. Wiedenmann, J., Schenk, A., Rocker, C., et al. (2002). A far-red fluorescent protein with fast maturation and reduced oligomerization tendency from Entacmaea quadricolor (Anthozoa, Actinaria). Proceedings of the National Academy of Sciences of the United States of America, 99, 11646–11651.

    ADS  Google Scholar 

  13. Deliolanis, N. C., Kasmieh, R., Wurdinger, T., et al. (2008). Performance of the red-shifted fluorescent proteins in deep-tissue molecular imaging applications. Journal of Biomedical Optics, 13, 044008.

    Google Scholar 

  14. Weissleder, R. (2001). A clearer vision for in vivo imaging. Nature Biotechnology, 19, 316–317.

    Google Scholar 

  15. Ntziachristos, V. (2006). Fluorescence molecular imaging. Annual Review of Biomedical Engineering, 8, 1–33.

    Google Scholar 

  16. Davidson, M. W., & Campbell, R. E. (2009). Engineered fluorescent proteins: Innovations and applications. Nature Methods, 6, 713–717.

    Google Scholar 

  17. Shcherbakova, D. M., Subach, O. M., & Verkhusha, V. V. (2012). Red fluorescent proteins: Advanced imaging applications and future design. Angewandte Chemie (International ed. in English), 51, 10724–10738.

    Google Scholar 

  18. Shcherbo, D., Shemiakina, I. I., Ryabova, A. V., et al. (2010). Near-infrared fluorescent proteins. Nature Methods, 7, 827–829.

    Google Scholar 

  19. Shcherbakova, D. M., & Verkhusha, V. V. (2013). Near-infrared fluorescent proteins for multicolor in vivo imaging. Nature Methods, 10, 751–754.

    Google Scholar 

  20. Drobizhev, M., Makarov, N. S., Tillo, S. E., et al. (2011). Two-photon absorption properties of fluorescent proteins. Nature Methods, 8, 393–399.

    Google Scholar 

  21. So, P. T. C., Dong, C. Y., Masters, B. R., & Berland, K. M. (2000). Two-photon excitation fluorescence microscopy. Annual Review of Biomedical Engineering, 2, 399–429.

    Google Scholar 

  22. Shimomura, O. (1979). Structure of the chromophore of Aequorea green fluorescent protein. FEBS Letters, 104, 220–222.

    Google Scholar 

  23. Lemay, N. P., Morgan, A. L., Archer, E. J., et al. (2008). The role of the tight-turn, broken hydrogen bonding, Glu222 and Arg96 in the post-translational green fluorescent protein chromophore formation. Chemical Physics, 348, 152–160.

    ADS  Google Scholar 

  24. Heim, R., Prasher, D. C., & Tsien, R. Y. (1994). Wavelength mutations and posttranslational autoxidation of green fluorescent protein. Proceedings of the National Academy of Sciences of the United States of America, 91, 12501–12504.

    ADS  Google Scholar 

  25. Cubitt, A. B., Heim, R., Adams, S. R., et al. (1995). Understanding, improving and using green fluorescent proteins. Trends in Biochemical Sciences, 20, 448–455.

    Google Scholar 

  26. Wachter, R. M., Watkins, J. L., & Kim, H. (2010). Mechanistic diversity of red fluorescence acquisition by GFP-like proteins. Biochemistry, 49, 7417–7427.

    Google Scholar 

  27. Reid, B. G., & Flynn, G. C. (1997). Chromophore formation in green fluorescent protein. Biochemistry, 36, 6786–6791.

    Google Scholar 

  28. Barondeau, D. P., Putnam, C. D., Kassmann, C. J., et al. (2003). Mechanism and energetics of green fluorescent protein chromophore synthesis revealed by trapped intermediate structures. Proceedings of the National Academy of Sciences of the United States of America, 100, 12111–12116.

    ADS  Google Scholar 

  29. Rosenow, M. A., Huffman, H. A., Phail, M. E., & Wachter, R. M. (2004). The crystal structure of the Y66L variant of green fluorescent protein supports a cyclization-oxidation-dehydration mechanism for chromophore maturation. Biochemistry, 43, 4464–4472.

    Google Scholar 

  30. Petersen, J., Wilmann, P. G., Beddoe, T., et al. (2003). The 2.0-angstrom crystal structure of eqFP611, a far red fluorescent protein from the sea anemone Entacmaea quadricolor. The Journal of Biological Chemistry, 278, 44626–44631.

    Google Scholar 

  31. Subach, F. V., & Verkhusha, V. V. (2012). Chromophore transformations in red fluorescent proteins. Chemical Reviews, 112, 4308–4327.

    Google Scholar 

  32. Miyawaki, A., Shcherbakova, D. M., & Verkhusha, V. V. (2012). Red fluorescent proteins: Chromophore formation and cellular applications. Current Opinion in Structural Biology, 22, 679–688.

    Google Scholar 

  33. Gross, L. A., Baird, G. S., Hoffman, R. C., et al. (2000). The structure of the chromophore within DsRed, a red fluorescent protein from coral. Proceedings of the National Academy of Sciences of the United States of America, 97, 11990–11995.

    ADS  Google Scholar 

  34. Verkhusha, V. V., & Lukyanov, K. A. (2004). The molecular properties and applications of Anthozoa fluorescent proteins and chromoproteins. Nature Biotechnology, 22, 289–296.

    Google Scholar 

  35. Strack, R. L., Strongin, D. E., Mets, L., et al. (2010). Chromophore formation in DsRed occurs by a branched pathway. Journal of the American Chemical Society, 132, 8496–8505.

    Google Scholar 

  36. Pletnev, S., Subach, F. V., Dauter, Z., et al. (2010). Understanding blue-to-red conversion in monomeric fluorescent timers and hydrolytic degradation of their chromophores. Journal of the American Chemical Society, 132, 2243–2253.

    Google Scholar 

  37. Subach, O. M., Patterson, G. H., Ting, L. M., et al. (2011). A photoswitchable orange-to-far-red fluorescent protein, PSmOrange. Nature Methods, 8, 771–777.

    Google Scholar 

  38. Cotlet, M., Hofkens, J., Habuchi, S., et al. (2001). Identification of different emitting species in the red fluorescent protein DsRed by means of ensemble and single-molecule spectroscopy. Proceedings of the National Academy of Sciences of the United States of America, 98, 14398–14403.

    ADS  Google Scholar 

  39. Tomosugi, W., Matsuda, T., Tani, T., et al. (2009). An ultramarine fluorescent protein with increased photostability and pH insensitivity. Nature Methods, 6, 351–353.

    Google Scholar 

  40. Dedecker, P., De Schryver, F. C., & Hofkens, J. (2013). Fluorescent proteins: Shine on, you crazy diamond. Journal of the American Chemical Society, 135, 2387–2402.

    Google Scholar 

  41. Bokman, S. H., & Ward, W. W. (1981). Renaturation of Aequorea gree-fluorescent protein. Biochemical and Biophysical Research Communications, 101, 1372–1380.

    Google Scholar 

  42. Meech, S. R. (2009). Excited state reactions in fluorescent proteins. Chemical Society Reviews, 38, 2922–2934.

    Google Scholar 

  43. Tolbert, L. M., Baldridge, A., Kowalik, J., & Solntsev, K. M. (2012). Collapse and recovery of green fluorescent protein chromophore emission through topological effects. Accounts of Chemical Research, 45, 171–181.

    Google Scholar 

  44. Niwa, H., Inouye, S., Hirano, T., et al. (1996). Chemical nature of the light emitter of the Aequorea green fluorescent protein. Proceedings of the National Academy of Sciences of the United States of America, 93, 13617–13622.

    ADS  Google Scholar 

  45. Litvinenko, K. L., Webber, N. M., & Meech, S. R. (2001). An ultrafast polarisation spectroscopy study of internal conversion and orientational relaxation of the chromophore of the green fluorescent protein. Chemical Physics Letters, 346, 47–53.

    ADS  Google Scholar 

  46. Webber, N. M., Litvinenko, K. L., & Meech, S. R. (2001). Radiationless relaxation in a synthetic analogue of the green fluorescent protein chromophore. Journal of Physical Chemistry B, 105, 8036–8039.

    Google Scholar 

  47. Vengris, M., van Stokkum I. H., He, X., et al. (2004). Ultrafast excited and ground-state dynamics of the green fluorescent protein chromophore in solution. Journal of Physical Chemistry A, 108, 4587–4598.

    ADS  Google Scholar 

  48. Stavrov, S. S., Solntsev, K. M., Tolbert, L. M., & Huppert, D. (2006). Probing the decay coordinate of the green fluorescent protein: Arrest of cis-trans isomerization by the protein significantly narrows the fluorescence spectra. Journal of the American Chemical Society, 128, 1540–1546.

    Google Scholar 

  49. Ward, W. W., Prentice, H. J., Roth, A. F., et al. (1982). Spectral perturbations of the Aequorea green-fluorescent protein. Photochemistry and Photobiology, 35, 803–808.

    Google Scholar 

  50. Ai, H., Shaner, N. C., Cheng, Z., et al. (2007). Exploration of new chromophore structures leads to the identification of improved blue fluorescent proteins. Biochemistry, 46, 5904–5910.

    Google Scholar 

  51. Chattoraj, M., King, B. A., Bublitz, G. U., & Boxer, S. G. (1996). Ultra-fast excited state dynamics in green fluorescent protein: Multiple states and proton transfer. Proceedings of the National Academy of Sciences of the United States of America, 93, 8362–8367.

    ADS  Google Scholar 

  52. Brejc, K., Sixma, T. K., Kitts, P. A., et al. (1997). Structural basis for dual excitation and photoisomerization of the Aequorea victoria green fluorescent protein. Proceedings of the National Academy of Sciences of the United States of America, 94, 2306–2311.

    ADS  Google Scholar 

  53. Kogure, T., Kawano, H., Abe, Y., & Miyawaki, A. (2008). Fluorescence imaging using a fluorescent protein with a large Stokes shift. Methods (San Diego, California), 45, 223–226.

    Google Scholar 

  54. Piatkevich, K. D., Hulit, J., Subach, O. M., et al. (2010). Monomeric red fluorescent proteins with a large Stokes shift. Proceedings of the National Academy of Sciences of the United States of America, 107, 5369–5374.

    ADS  Google Scholar 

  55. Baird, G. S., Zacharias, D. A., & Tsien, R. Y. (2000). Biochemistry, mutagenesis, and oligomerization of DsRed, a red fluorescent protein from coral. Proceedings of the National Academy of Sciences of the United States of America, 97, 11984–11989.

    ADS  Google Scholar 

  56. Yarbrough, D., Wachter, R. M., Kallio, K., et al. (2001). Refined crystal structure of DsRed, a red fluorescent protein from coral, at 2.0-Å resolution. Proceedings of the National Academy of Sciences of the United States of America, 98, 462–467.

    ADS  Google Scholar 

  57. Lauf, U., Lopez, P., & Falk, M. M. (2001). Expression of fluorescently tagged connexins: A novel approach to rescue function of oligomeric DsRed-tagged proteins. FEBS Letters, 498, 11–15.

    Google Scholar 

  58. Gavin, P., Devenish, R. J., & Prescott, M. (2002). An approach for reducing unwanted oligomerisation of DsRed fusion proteins. Biochemical and Biophysical Research Communications, 298, 707–713.

    Google Scholar 

  59. Soling, A., Simm, A., & Rainov, N. (2002). Intracellular localization of Herpes simplex virus type 1 thymidine kinase fused to different fluorescent proteins depends on choice of fluorescent tag. FEBS Letters, 527, 153–158.

    Google Scholar 

  60. Campbell, R. E., Tour, O., Palmer, A. E., et al. (2002). A monomeric red fluorescent protein. Proceedings of the National Academy of Sciences of the United States of America, 99, 7877–7882.

    ADS  Google Scholar 

  61. Shaner, N. C., Campbell, R. E., Steinbach, P. A., et al. (2004). Improved monomeric red, orange and yellow fluorescent proteins derived from Discosoma sp. red fluorescent protein. Nature Biotechnology, 22, 1567–1572.

    Google Scholar 

  62. Shaner, N. C., Steinbach, P. A., & Tsien, R. Y. (2005). A guide to choosing fluorescent proteins. Nature Methods, 2, 905–909.

    Google Scholar 

  63. Shaner, N. C., Lin, M. Z., McKeown, M. R., et al. (2008). Improving the photostability of bright monomeric orange and red fluorescent proteins. Nature Methods, 5, 545–551.

    Google Scholar 

  64. Ai, H., Henderson, J. N., Remington, S. J., & Campbell, R. E. (2006). Directed evolution of a monomeric, bright and photostable version of Clavularia cyan fluorescent protein: Structural characterization and applications in fluorescence imaging. The Biochemical Journal, 400, 531–540.

    Google Scholar 

  65. Hoi, H., Howe, E. S., Ding, Y., et al. (2013). An engineered monomeric zoanthus sp yellow fluorescent protein. Chemistry & Biology, 20, 1296–1304.

    Google Scholar 

  66. Yanushevich, Y. G., Staroverov, D. B., Savitsky, A. P., et al. (2002). A strategy for the generation of non-aggregating mutants of Anthozoa fluorescent proteins. FEBS Letters, 511, 11–14.

    Google Scholar 

  67. Patterson, G. H., & Lippincott-Schwartz, J. (2002). A photoactivatable GFP for selective photolabeling of proteins and cells. Science, 297, 1873–1877.

    ADS  Google Scholar 

  68. Shaner, N. C., Lin, M. Z., McKeown, M. R., et al. (2009). Evaluating and improving the photostability of fluorescent proteins. Proceedings of the SPIE, 7191, 719105.

    Google Scholar 

  69. Shaner, N. C., Patterson, G. H., & Davidson, M. W. (2007). Advances in fluorescent protein technology. Journal of Cell Science, 120, 4247–4260.

    Google Scholar 

  70. Lubbeck, J. L., Dean, K. M., Ma, H., et al. (2012). Microfluidic flow cytometer for quantifying photobleaching of fluorescent proteins in cells. Analytical Chemistry, 84, 3929–3937.

    Google Scholar 

  71. Shcherbo, D., Murphy, C. S., Ermakova, G. V., et al. (2009). Far-red fluorescent tags for protein imaging in living tissues. The Biochemical Journal, 418, 567–574.

    Google Scholar 

  72. Ando, R., Mizuno, H., & Miyawaki, A. (2004). Regulated fast nucleocytoplasmic shuttling observed by reversible protein highlighting. Science, 306, 1370–1373.

    ADS  Google Scholar 

  73. David, C. C., Dedecker, P., Cremer, G. D., et al. (2012). Spectroscopic characterization of Venus at the single molecule level. Photochemical & Photobiological Sciences: Official Journal of the European Photochemistry Association and the European Society for Photobiology, 11, 358–363.

    Google Scholar 

  74. Marchant, J. S., Stutzmann, G. E., Leissring, M. A., et al. (2001). Multiphoton-evoked color change of DsRed as an optical highlighter for cellular and subcellular labeling. Nature Biotechnology, 19, 645–649.

    Google Scholar 

  75. Bogdanov, A. M., Mishin, A. S., Yampolsky, I. V., et al. (2009). Green fluorescent proteins are light-induced electron donors. Nature Chemical Biology, 5, 459–461.

    Google Scholar 

  76. Hoi, H., Shaner, N. C., Davidson, M. W., et al. (2010). A monomeric photoconvertible fluorescent protein for imaging of dynamic protein localization. Journal of Molecular Biology, 401, 776–791.

    Google Scholar 

  77. Kremers, G. J., Hazelwood, K. L., Murphy, C. S., et al. (2009). Photoconversion in orange and red fluorescent proteins. Nature Methods, 6, 355–358.

    Google Scholar 

  78. Ai, H. W., Baird, M. A., Shen, Y., et al. (2014). Engineering and characterizing monomeric fluorescent proteins for live-cell imaging applications. Nature Protocols, 9, 910–928.

    Google Scholar 

  79. Pedelacq, J. D., Cabantous, S., Tran, T., et al. (2006). Engineering and characterization of a superfolder green fluorescent protein. Nature Biotechnology, 24, 79–88.

    Google Scholar 

  80. Goedhart, J., van Weeren L., Hink, M. A., et al. (2010). Bright cyan fluorescent protein variants identified by fluorescence lifetime screening. Nature Methods, 7, 137–139.

    Google Scholar 

  81. Grotjohann, T., Testa, I., Leutenegger, M., et al. (2011). Diffraction-unlimited all-optical imaging and writing with a photochromic GFP. Nature, 478, 204–208.

    ADS  Google Scholar 

  82. Ai, H., Hazelwood, K. L., Davidson, M. W., & Campbell, R. E. (2008). Fluorescent protein FRET pairs for ratiometric imaging of dual biosensors. Nature Methods, 5, 401–403.

    Google Scholar 

  83. Esvelt, K. M., Carlson, J. C., & Liu, D. R. (2011). A system for the continuous directed evolution of biomolecules. Nature, 472, 499–503.

    ADS  Google Scholar 

  84. Agresti, J. J., Antipov, E., Abate, A. R., et al. (2010). Ultrahigh-throughput screening in drop-based microfluidics for directed evolution. Proceedings of the National Academy of Sciences of the United States of America, 107, 4004–4009.

    ADS  Google Scholar 

  85. Lubbeck, J. L., Dean, K. M., Davis, L. M., et al. (2011). A microfluidic cell sorter for directed evolution of fluorescent proteins based on dark-state conversion and photobleaching. Biophysical Journal, 100, 175a.

    ADS  Google Scholar 

  86. Davis, L. M., Lubbeck, J. L., Dean, K. M., et al. (2013). Microfluidic cell sorter for use in developing red fluorescent proteins with improved photostability. Lab on a Chip, 13, 2320–2327.

    Google Scholar 

  87. Zhao, Y., Abdelfattah, A. S., Zhao, Y., et al. (2014). Microfluidic cell sorter-aided directed evolution of a protein-based calcium ion indicator with an inverted fluorescent response. Integrative Biology, 6, 714–725.

    Google Scholar 

  88. Alford, S. C., Wu, J., Zhao, Y., et al. (2013). Optogenetic reporters. Biology of the Cell, 105, 14–29.

    Google Scholar 

  89. Miyawaki, A., Llopis, J., Heim, R., et al. (1997). Fluorescent indicators for Ca2+ based on green fluorescent proteins and calmodulin. Nature, 388, 882–887.

    ADS  Google Scholar 

  90. Kerppola, T. K. (2008). Bimolecular fluorescence complementation (BiFC) analysis as a probe of protein interactions in living cells. Annual Review of Biophysics, 37, 465–487.

    Google Scholar 

  91. Ghosh, I., Hamilton, A. D., & Regan, L. (2000). Antiparallel leucine zipper-directed protein reassembly: Application to the green fluorescent protein. Journal of the American Chemical Society, 122, 5658–5659.

    Google Scholar 

  92. Nagai, T., Sawano, A., Park, E. S., & Miyawaki, A. (2001). Circularly permuted green fluorescent proteins engineered to sense Ca2+. Proceedings of the National Academy of Sciences of the United States of America, 98, 3197–3202.

    ADS  Google Scholar 

  93. Siegel, M. S., & Isacoff, E. Y. (1997). A genetically encoded optical probe of membrane voltage. Neuron, 19, 735–741.

    Google Scholar 

  94. Baird, G. S., Zacharias, D. A., & Tsien, R. Y. (1999). Circular permutation and receptor insertion within green fluorescent proteins. Proceedings of the National Academy of Sciences of the United States of America, 96, 11241–11246.

    ADS  Google Scholar 

  95. Nakai, J., Ohkura, M., & Imoto, K. (2001). A high signal-to-noise Ca2+ probe composed of a single green fluorescent protein. Nature Biotechnology, 19, 137–141.

    Google Scholar 

  96. Saito, K., Chang, Y. F., Horikawa, K., et al. (2012). Luminescent proteins for high-speed single-cell and whole-body imaging. Nature Communications, 3, 1262.

    ADS  Google Scholar 

  97. Alford, S. C., Abdelfattah, A. S., Ding, Y., & Campbell, R. E. (2012). A fluorogenic red fluorescent protein heterodimer. Chemistry & Biology, 19, 353–360.

    Google Scholar 

  98. Alford, S. C., Ding, Y., Simmen, T., & Campbell, R. E. (2012). Dimerization-dependent green and yellow fluorescent proteins. ACS Synthetic Biology, 1, 569–575.

    Google Scholar 

  99. Forster, T. (1959). Transfer mechanisms of electronic excitation. Discussions of the Faraday Society, 27, 7–17.

    Google Scholar 

  100. Grynkiewicz, G., Poenie, M., & Tsien, R. Y. (1985). A new generation of Ca2+ indicators with greatly improved fluorescence properties. The Journal of Biological Chemistry, 260, 3440–3450.

    Google Scholar 

  101. Zaccolo, M., De Giorgi, F., Cho, C. Y., et al. (2000). A genetically encoded, fluorescent indicator for cyclic AMP in living cells. Nature Cell Biology, 2, 25–29.

    Google Scholar 

  102. Akemann, W., Mutoh, H., Perron, A., et al. (2012). Imaging neural circuit dynamics with a voltage-sensitive fluorescent protein. Journal of Neurophysiology, 108, 2323–2337.

    Google Scholar 

  103. Zhang, J., Ma, Y., Taylor, S. S., & Tsien, R. Y. (2001). Genetically encoded reporters of protein kinase A activity reveal impact of substrate tethering. Proceedings of the National Academy of Sciences of the United States of America, 98, 14997–15002.

    ADS  Google Scholar 

  104. Ting, A. Y., Kain, K. H., Klemke, R. L., & Tsien, R. Y. (2001). Genetically encoded fluorescent reporters of protein tyrosine kinase activities in living cells. Proceedings of the National Academy of Sciences of the United States of America, 98, 15003–15008.

    ADS  Google Scholar 

  105. Fehr, M., Frommer, W. B., & Lalonde, S. (2002). Visualization of maltose uptake in living yeast cells by fluorescent nanosensors. Proceedings of the National Academy of Sciences of the United States of America, 99, 9846–9851.

    ADS  Google Scholar 

  106. Wu, C., Mino, K., Akimoto, H., et al. (2009). In vivo far-red luminescence imaging of a biomarker based on BRET from Cypridina bioluminescence to an organic dye. Proceedings of the National Academy of Sciences of the United States of America, 106, 15599–15603.

    ADS  Google Scholar 

  107. Chu, J., Zhang, Z., Zheng, Y., et al. (2009). A novel far-red bimolecular fluorescence complementation system that allows for efficient visualization of protein interactions under physiological conditions. Biosensors & Bioelectronics, 25, 234–239.

    Google Scholar 

  108. Fan, J. Y., Cui, Z. Q., Wei, H. P., et al. (2008). Split mCherry as a new red bimolecular fluorescence complementation system for visualizing protein-protein interactions in living cells. Biochemical and Biophysical Research Communications, 367, 47–53.

    Google Scholar 

  109. Jach, G., Pesch, M., Richter, K., et al. (2006). An improved mRFP1 adds red to bimolecular fluorescence complementation. Nature Methods, 3, 597–600.

    Google Scholar 

  110. Ohashi, K., Kiuchi, T., Shoji, K., et al. (2012). Visualization of cofilin-actin and Ras-Raf interactions by bimolecular fluorescence complementation assays using a new pair of split Venus fragments. Biotechniques, 52, 45–50.

    Google Scholar 

  111. Shyu, Y. J., Liu, H., Deng, X., & Hu, C. D. (2006). Identification of new fluorescent protein fragments for bimolecular fluorescence complementation analysis under physiological conditions. Biotechniques, 40, 61–66.

    Google Scholar 

  112. Zhao, Y., Araki, S., Wu, J., et al. (2011). An expanded palette of genetically encoded Ca2+ indicators. Science, 333, 1888–1891.

    ADS  Google Scholar 

  113. Miesenböck, G., De Angelis, D. A., & Rothman, J. E. (1998). Visualizing secretion and synaptic transmission with pH-sensitive green fluorescent proteins. Nature, 394, 192–195.

    ADS  Google Scholar 

  114. Kuner, T., & Augustine, G. J. (2000). A genetically encoded ratiometric indicator for chloride: Capturing chloride transients in cultured hippocampal neurons. Neuron, 27, 447–459.

    Google Scholar 

  115. Eli, P., & Chakrabartty, A. (2006). Variants of DsRed fluorescent protein: Development of a copper sensor. Protein Science: A Publication of the Protein Society, 15, 2442–2447.

    Google Scholar 

  116. Hanson, G. T., Aggeler, R., Oglesbee, D., et al. (2004). Investigating mitochondrial redox potential with redox-sensitive green fluorescent protein indicators. The Journal of Biological Chemistry, 279, 13044–13053.

    Google Scholar 

  117. Dooley, C. T., Dore, T. M., Hanson, G. T., et al. (2004). Imaging dynamic redox changes in mammalian cells with green fluorescent protein indicators. The Journal of Biological Chemistry, 279, 22284–22293.

    Google Scholar 

  118. Ostergaard, H., Henriksen, A., Hansen, F. G., & Winther, J. R. (2001). Shedding light on disulfide bond formation: Engineering a redox switch in green fluorescent protein. The EMBO Journal, 20, 5853–5862.

    Google Scholar 

  119. Tang, S., Wong, H.-C., Wang, Z.-M., et al. (2011). Design and application of a class of sensors to monitor Ca2+ dynamics in high Ca2+ concentration cellular compartments. Proceedings of the National Academy of Sciences of the United States of America, 108, 16265–16270.

    ADS  Google Scholar 

  120. Chen, S., Chen, Z. J., Ren, W., & Ai, H. W. (2012). Reaction-based genetically encoded fluorescent hydrogen sulfide sensors. Journal of the American Chemical Society, 134, 9589–9592.

    Google Scholar 

  121. Chen, Z. J., Ren, W., Wright, Q. E., & Ai, H. W. (2013). Genetically encoded fluorescent probe for the selective detection of peroxynitrite. Journal of the American Chemical Society, 135, 14940–14943.

    Google Scholar 

  122. Topell, S., Hennecke, J., & Glockshuber, R. (1999). Circularly permuted variants of the green fluorescent protein. FEBS Letters, 457, 283–289.

    Google Scholar 

  123. Griesbeck, O., Baird, G. S., Campbell, R. E., et al. (2001). Reducing the environmental sensitivity of yellow fluorescent protein. Mechanism and applications. The Journal of Biological Chemistry, 276, 29188–29194.

    Google Scholar 

  124. Wang, Q., Shui, B., Kotlikoff, M. I., & Sondermann, H. (2008). Structural basis for calcium sensing by GCaMP2. Structure (London, England: 1993), 16, 1817–1827.

    Google Scholar 

  125. Akerboom, J., Rivera, J. D., Guilbe, M. M., et al. (2009). Crystal structures of the GCaMP calcium sensor reveal the mechanism of fluorescence signal change and aid rational design. The Journal of Biological Chemistry, 284, 6455–6464.

    Google Scholar 

  126. Helmchen, F., & Denk, W. (2005). Deep tissue two-photon microscopy. Nature Methods, 2, 932–940.

    Google Scholar 

  127. Miesenböck, G., & Kevrekidis, I. G. (2005). Optical imaging and control of genetically designated neurons in functioning circuits. Annual Review of Neuroscience, 28, 533–563.

    Google Scholar 

  128. Svoboda, K., & Yasuda, R. (2006). Principles of two-photon excitation microscopy and its applications to neuroscience. Neuron, 50, 823–839.

    Google Scholar 

  129. Marcaggi, P., Mutoh, H., Dimitrov, D., et al. (2009). Optical measurement of mGluR1 conformational changes reveals fast activation, slow deactivation, and sensitization. Proceedings of the National Academy of Sciences of the United States of America, 106, 11388–11393.

    ADS  Google Scholar 

  130. Bozza, T., McGann, J. P., Mombaerts, P., & Wachowiak, M. (2004). In vivo imaging of neuronal activity by targeted expression of a genetically encoded probe in the mouse. Neuron, 42, 9–21.

    Google Scholar 

  131. Hires, S. A., Zhu, Y., & Tsien, R. Y. (2008). Optical measurement of synaptic glutamate spillover and reuptake by linker optimized glutamate-sensitive fluorescent reporters. Proceedings of the National Academy of Sciences of the United States of America, 105, 4411–4416.

    ADS  Google Scholar 

  132. Kralj, J. M., Douglass, A. D., Hochbaum, D. R., et al. (2012). Optical recording of action potentials in mammalian neurons using a microbial rhodopsin. Nature Methods, 9, 90–95.

    Google Scholar 

  133. Dimitrov, D., He, Y., Mutoh, H., et al. (2007). Engineering and characterization of an enhanced fluorescent protein voltage sensor. PLoS ONE, 2, e440.

    ADS  Google Scholar 

  134. Tsutsui, H., Karasawa, S., Okamura, Y., & Miyawaki, A. (2008). Improving membrane voltage measurements using FRET with new fluorescent proteins. Nature Methods, 5, 683–685.

    Google Scholar 

  135. Akemann, W., Mutoh, H., Perron, A., et al. (2010). Imaging brain electric signals with genetically targeted voltage-sensitive fluorescent proteins. Nature Methods, 7, 643–649.

    Google Scholar 

  136. Chen, T. W., Wardill, T. J., Sun, Y., et al. (2013). Ultrasensitive fluorescent proteins for imaging neuronal activity. Nature, 499, 295–300.

    ADS  Google Scholar 

  137. Thestrup, T., Litzlbauer, J., Bartholomäus, I., et al. (2014). Optimized ratiometric calcium sensors for functional in vivo imaging of neurons and T lymphocytes. Nature Methods 11, 175–182.

    Google Scholar 

  138. Wu, J., Liu, L., Matsuda, T., et al. (2013). Improved orange and red Ca2+ indicators and photophysical considerations for optogenetic applications. ACS Chemical Neuroscience, 4, 963–972.

    Google Scholar 

  139. Berridge, M. J. (1998). Neuronal calcium signaling. Neuron, 21, 13–26.

    Google Scholar 

  140. Berridge, M. J., Lipp, P., & Bootman, M. D. (2000). The versatility and universality of calcium signalling. Nature Reviews. Molecular Cell Biology, 1, 11–21.

    Google Scholar 

  141. Kerr, R., Lev-Ram, V., Baird, G., et al. (2000). Optical imaging of calcium transients in neurons and pharyngeal muscle of C elegans. Neuron, 26, 583–594.

    Google Scholar 

  142. Garaschuk, O., Milos, R.-I., Grienberger, C., et al. (2006). Optical monitoring of brain function in vivo: From neurons to networks. Pflügers Archiv European Journal of Physiology, 453, 385–396.

    Google Scholar 

  143. Göbel, W., & Helmchen, F. (2007). In vivo calcium imaging of neural network function. Physiology, 22, 358–365.

    Google Scholar 

  144. Mank, M., & Griesbeck, O. (2008). Genetically encoded calcium indicators. Chemical Reviews, 108, 1550–1564.

    Google Scholar 

  145. Tour, O., Adams, S. R., Kerr, R. A., et al. (2007). Calcium green FlAsH as a genetically targeted small-molecule calcium indicator. Nature Chemical Biology, 3, 423–431.

    Google Scholar 

  146. Griffin, B. A., Adams, S. R., & Tsien, R. Y. (1998). Specific covalent labeling of recombinant protein molecules inside live cells. Science, 281, 269–272.

    ADS  Google Scholar 

  147. Adams, S. R., Campbell, R. E., Gross, L. A., et al. (2002). New biarsenical ligands and tetracysteine motifs for protein labeling in vitro and in vivo: Synthesis and biological applications. Journal of the American Chemical Society, 124, 6063–6076.

    Google Scholar 

  148. Gaietta, G., Deerinck, T. J., Adams, S. R., et al. (2002). Multicolor and electron microscopic imaging of connexin trafficking. Science, 296, 503–507.

    ADS  Google Scholar 

  149. Romoser, V. A., Hinkle, P. M., & Persechini, A. (1997). Detection in living cells of Ca2+-dependent changes in the fluorescence emission of an indicator composed of two green fluorescent protein variants linked by a calmodulin-binding sequence A new class of fluorescent indicators. The Journal of Biological Chemistry, 272, 13270–13274.

    Google Scholar 

  150. Mank, M., Santos, A. F., Direnberger, S., et al. (2008). A genetically encoded calcium indicator for chronic in vivo two-photon imaging. Nature Methods, 5, 805–811.

    Google Scholar 

  151. Miyawaki, A., Griesbeck, O., Heim, R., & Tsien, R. Y. (1999). Dynamic and quantitative Ca2+ measurements using improved cameleons. Proceedings of the National Academy of Sciences of the United States of America, 96, 2135–2140.

    ADS  Google Scholar 

  152. Nagai, T., Yamada, S., Tominaga, T., et al. (2004). Expanded dynamic range of fluorescent indicators for Ca2+ by circularly permuted yellow fluorescent proteins. Proceedings of the National Academy of Sciences of the United States of America, 101, 10554–10559.

    ADS  Google Scholar 

  153. Horikawa, K., Yamada, Y., Matsuda, T., et al. (2010). Spontaneous network activity visualized by ultrasensitive Ca(2+) indicators, yellow Cameleon-Nano. Nature Methods, 7, 729–732.

    Google Scholar 

  154. Heim, N., & Griesbeck, O. (2004). Genetically encoded indicators of cellular calcium dynamics based on troponin C and green fluorescent protein. The Journal of Biological Chemistry, 279, 14280–14286.

    Google Scholar 

  155. Mank, M., Reiff, D. F., Heim, N., et al. (2006). A FRET-based calcium biosensor with fast signal kinetics and high fluorescence change. Biophysical Journal, 90, 1790–1796.

    ADS  Google Scholar 

  156. Reiff, D. F., Ihring, A., Guerrero, G., et al. (2005). In vivo performance of genetically encoded indicators of neural activity in flies. The Journal of Neuroscience: The Official Journal of the Society for Neuroscience, 25, 4766–4778.

    Google Scholar 

  157. Díez-García, J., Matsushita, S., Mutoh, H., et al. (2005). Activation of cerebellar parallel fibers monitored in transgenic mice expressing a fluorescent Ca2+ indicator protein. The European Journal of Neuroscience, 22, 627–635.

    Google Scholar 

  158. Tian, L., Hires, S. A., Mao, T., et al. (2009). Imaging neural activity in worms, flies and mice with improved GCaMP calcium indicators. Nature Methods, 6, 875–881.

    Google Scholar 

  159. Gee, K. R., Brown, K. A., Chen, W. N. U., et al. (2000). Chemical and physiological characterization of fluo-4 Ca2+-indicator dyes. Cell Calcium, 27, 97–106.

    Google Scholar 

  160. Sun, X. R., Badura, A., Pacheco, D. A., et al. (2013). Fast GCaMPs for improved tracking of neuronal activity. Nature Communications, 4 Article number: 2170.

    Google Scholar 

  161. Ohkura, M., Sasaki, T., Kobayashi, C., et al. (2012). An improved genetically encoded red fluorescent Ca2+ indicator for detecting optically evoked action potentials. PLoS ONE, 7, e39933.

    Google Scholar 

  162. Akerboom, J., Calderón, N. C., Tian, L., et al. (2013). Genetically encoded calcium indicators for multi-color neural activity imaging and combination with optogenetics. Frontiers in Molecular Neuroscience, 6, 2.

    Google Scholar 

  163. Boyden, E. S., Zhang, F., Bamberg, E., et al. (2005). Millisecond-timescale, genetically targeted optical control of neural activity. Nature Neuroscience, 8, 1263–1268.

    Google Scholar 

  164. Wardill, T. J., Chen, T. W., Schreiter, E. R., et al. (2013). A neuron-based screening platform for optimizing genetically-encoded calcium indicators. PLoS ONE, 8, e77728.

    Google Scholar 

  165. Fiala, A., Spall, T., Diegelmann, S., et al. (2002). Genetically expressed Cameleon in Drosophila melanogaster is used to visualize olfactory information in projection neurons. Current Biology: CB, 12, 1877–1884.

    Google Scholar 

  166. Yu, D., Baird, G. S., Tsien, R. Y., & Davis, R. L. (2003). Detection of calcium transients in Drosophila mushroom body neurons with camgaroo reporters. The Journal of Neuroscience: The Official Journal of the Society for Neuroscience, 23, 64–72.

    MATH  Google Scholar 

  167. Wang, J. W., Wong, A. M., Flores, J., et al. (2003). Two-photon calcium imaging reveals an odor-evoked map of activity in the fly brain. Cell, 112, 271–282.

    Google Scholar 

  168. Liu, L., Yermolaieva, O., Johnson, W. A., et al. (2003). Identification and function of thermosensory neurons in Drosophila larvae. Nature Neuroscience, 6, 267–273.

    Google Scholar 

  169. Higashijima, S.-I., Masino, M. A., Mandel, G., & Fetcho, J. R. (2003). Imaging neuronal activity during zebrafish behavior with a genetically encoded calcium indicator. Journal of Neurophysiology, 90, 3986–3997.

    Google Scholar 

  170. Hasan, M. T., Friedrich, R. W., Euler, T., et al. (2004). Functional fluorescent Ca2+ indicator proteins in transgenic mice under TET control. PLoS Biology, 2, e163.

    Google Scholar 

  171. Knöpfel, T. (2012). Genetically encoded optical indicators for the analysis of neuronal circuits. Nature Reviews. Neuroscience, 13, 687–700.

    Google Scholar 

  172. Díez-García, J., Akemann, W., & Knöpfel, T. (2007). In vivo calcium imaging from genetically specified target cells in mouse cerebellum. NeuroImage, 34, 859–869.

    Google Scholar 

  173. Qiu, D.-L., & Knöpfel, T. (2007). An NMDA receptor/nitric oxide cascade in presynaptic parallel fiber—Purkinje neuron long-term potentiation. The Journal of Neuroscience: The Official Journal of the Society for Neuroscience, 27, 3408–3415.

    Google Scholar 

  174. Qiu, D.-L., & Knöpfel, T. (2009). Presynaptically expressed long-term depression at cerebellar parallel fiber synapses. Pflügers Archiv—European Journal of Physiology, 457, 865–875.

    Google Scholar 

  175. Warp, E., Agarwal, G., Wyart, C., et al. (2012). Emergence of patterned activity in the developing zebrafish spinal cord. Current Biology: CB, 22, 93–102.

    Google Scholar 

  176. Fletcher, M. L., Masurkar, A. V., Xing, J., et al. (2009). Optical imaging of postsynaptic odor representation in the glomerular layer of the mouse olfactory bulb. Journal of Neurophysiology, 102, 817–830.

    Google Scholar 

  177. Fletcher, M. L. (2011). Analytical processing of binary mixture information by olfactory bulb glomeruli. PLoS ONE, 6, e29360.

    Google Scholar 

  178. Harvey, C. D., Coen, P., & Tank, D. W. (2012). Choice-specific sequences in parietal cortex during a virtual-navigation decision task. Nature, 484, 62–68.

    ADS  Google Scholar 

  179. Ahrens, M. B., Orger, M. B., Robson, D. N., et al. (2013). Whole-brain functional imaging at cellular resolution using light-sheet microscopy. Nature Methods, 10, 413–420.

    Google Scholar 

  180. Akerboom, J., Chen, T. W., Wardill, T. J., et al. (2012). Optimization of a GCaMP calcium indicator for neural activity imaging. The Journal of Neuroscience: The Official Journal of the Society for Neuroscience, 32, 13819–13840.

    Google Scholar 

  181. Andermann, M. L., Kerlin, A. M., & Reid, R. C. (2010). Chronic cellular imaging of mouse visual cortex during operant behavior and passive viewing. Frontiers in Cell Neuroscience, 4, 3.

    Google Scholar 

  182. Minderer, M., Liu, W., Sumanovski, L. T., et al. (2012). Chronic imaging of cortical sensory map dynamics using a genetically encoded calcium indicator. The Journal of Physiology, 590, 99–107.

    Google Scholar 

  183. Dombeck, D. A., Harvey, C. D., Tian, L., et al. (2010). Functional imaging of hippocampal place cells at cellular resolution during virtual navigation. Nature Neuroscience, 13, 1433–1440.

    Google Scholar 

  184. Huber, D., Gutnisky, D. A., Peron, S., et al. (2012). Multiple dynamic representations in the motor cortex during sensorimotor learning. Nature, 484, 473–478.

    ADS  Google Scholar 

  185. Ataka, K., & Pieribone, V. A. (2002). A genetically targetable fluorescent probe of channel gating with rapid kinetics. Biophysical Journal, 82, 509–516.

    ADS  Google Scholar 

  186. Sakai, R., Repunte-Canonigo, V., Raj, C. D., & Knöpfel, T. (2001). Design and characterization of a DNA-encoded, voltage-sensitive fluorescent protein. The European Journal of Neuroscience, 13, 2314–2318.

    Google Scholar 

  187. Guerrero, G., Siegel, M. S., Roska, B., et al. (2002). Tuning FlaSh: Redesign of the dynamics, voltage range, and color of the genetically encoded optical sensor of membrane potential. Biophysical Journal, 83, 3607–3618.

    ADS  Google Scholar 

  188. Baker, B. J., Lee, H., Pieribone, V. A., et al. (2007). Three fluorescent protein voltage sensors exhibit low plasma membrane expression in mammalian cells. Journal of Neuroscience Methods, 161, 32–38.

    Google Scholar 

  189. Lundby, A., Mutoh, H., Dimitrov, D., et al. (2008). Engineering of a genetically encodable fluorescent voltage sensor exploiting fast Ci-VSP voltage-sensing movements. PLoS ONE, 3, e2514.

    Google Scholar 

  190. Jin, L., Baker, B., Mealer, R., et al. (2011). Random insertion of split-cans of the fluorescent protein venus into Shaker channels yields voltage sensitive probes with improved membrane localization in mammalian cells. Journal of Neuroscience Methods, 199, 1–9.

    Google Scholar 

  191. Barnett, L., Platisa, J., Popovic, M., et al. (2012). A fluorescent, genetically-encoded voltage probe capable of resolving action potentials. PLoS ONE, 7, e43454.

    Google Scholar 

  192. Jin, L., Han, Z., Platisa, J., et al. (2012). Single action potentials and subthreshold electrical events imaged in neurons with a fluorescent protein voltage probe. Neuron, 75, 779–785.

    Google Scholar 

  193. Han, Z., Jin, L., Platisa, J., et al. (2013). Fluorescent protein voltage probes derived from ArcLight that respond to membrane voltage changes with fast kinetics. PLoS ONE, 8, e81295.

    Google Scholar 

  194. St-Pierre, F., Marshall, J. D., Yang, Y., et al. (2014). High-fidelity optical reporting of neuronal electrical activity with an ultrafast fluorescent voltage sensor. Nature Neuroscience, 17, 884–889.

    Google Scholar 

  195. Chanda, B., Blunck, R., Faria, L. C., et al. (2005). A hybrid approach to measuring electrical activity in genetically specified neurons. Nature Neuroscience, 8, 1619–1626.

    Google Scholar 

  196. Looger, L. L., & Griesbeck, O. (2012). Genetically encoded neural activity indicators. Current Opinion in Neurobiology, 22, 18–23.

    Google Scholar 

  197. Kralj, J. M., Hochbaum, D. R., Douglass, A. D., & Cohen, A. E. (2011). Electrical spiking in Escherichia coli probed with a fluorescent voltage-indicating protein. Science, 333, 345–348.

    ADS  Google Scholar 

  198. Maclaurin, D., Venkatachalam, V., Lee, H., & Cohen, A. E. (2013). Mechanism of voltage-sensitive fluorescence in a microbial rhodopsin. Proceedings of the National Academy of Sciences of the United States of America, 110, 5939–5944.

    ADS  Google Scholar 

  199. Gong, Y., Li, J. Z., & Schnitzer, M. J. (2013). Enhanced archaerhodopsin fluorescent protein voltage indicators. PLoS ONE, 8, e66959.

    Google Scholar 

  200. Hochbaum, D. R., Zhao, Y., Farhi, S. L., et al. (2014). All-optical electrophysiology in mammalian neurons using engineered microbial rhodopsins. Nature Methods 11,825–833.

    Google Scholar 

  201. Zou, P., Zhao, Y., Douglass, A. D., et al. (2014). Bright and fast multi-colored voltage reporters via electrochromic FRET (eFRET). Nature Communications (In press).

    Google Scholar 

  202. Gong, Y., Wagner, M. J., Zhong Li, J., & Schnitzer, M. J. (2014). Imaging neural spiking in brain tissue using FRET-opsin protein voltage sensors. Nature Communications, 5 Article number: 3674.

    Google Scholar 

  203. Pastrana, E. (2011). Light-based electrophysiology. Nature Methods, 9, 38–38.

    Google Scholar 

  204. Cao, J., Arha, M., Sudrik, C., et al. (2013). Light-inducible activation of target mRNA translation in mammalian cells. Chemical Communications (Cambridge), 49, 8338–8340.

    Google Scholar 

  205. Lynch, M. A. (2004). Long-term potentiation and memory. Physiological Reviews, 84, 87–136.

    Google Scholar 

  206. Snyder, S. H., & Innis, R. B. (1979). Peptide neurotransmitters. Annual Review of Biochemistry, 48, 755–782.

    Google Scholar 

  207. Cotman, C. W., & Monaghan, D. T. (1986). Anatomical organization of excitatory amino acid receptors and their properties. Advances in Experimental Medicine and Biology, 203, 237–252.

    Google Scholar 

  208. Okumoto, S., Looger, L. L., Micheva, K. D., et al. (2005). Detection of glutamate release from neurons by genetically encoded surface-displayed FRET nanosensors. Proceedings of the National Academy of Sciences of the United States of America, 102, 8740–8745.

    ADS  Google Scholar 

  209. Tsien, R. Y. (2005). Building and breeding molecules to spy on cells and tumors. FEBS Letters, 579, 927–932.

    Google Scholar 

  210. Marvin, J. S., Borghuis, B. G., Tian, L., et al. (2013). An optimized fluorescent probe for visualizing glutamate neurotransmission. Nature Methods, 10, 162–170.

    Google Scholar 

  211. Nguyen, Q.-T., Schroeder, L. F., Mank, M., et al. (2010). An in vivo biosensor for neurotransmitter release and in situ receptor activity. Nature Neuroscience, 13, 127–132.

    Google Scholar 

  212. Yamauchi, J. G., Nemecz, Nguyen, Q. T., et al. (2011). Characterizing ligand-gated ion channel receptors with genetically encoded Ca2+ sensors. PLoS ONE, 6, e16519.

    Google Scholar 

  213. Sudhof, T. C. (1995). The synaptic vesicle cycle: A cascade of protein–protein interactions. Nature, 375, 645–653.

    ADS  Google Scholar 

  214. Ng, M., Roorda, R. D., Lima, S. Q., et al. (2002). Transmission of olfactory information between three populations of neurons in the antennal lobe of the fly. Neuron, 36, 463–474.

    Google Scholar 

  215. Li, Y., & Tsien, R. W. (2012). pHTomato, a red, genetically encoded indicator that enables multiplex interrogation of synaptic activity. Nature Neuroscience, 15, 1047–1053.

    Google Scholar 

  216. Berglund, K., Schleich, W., Krieger, P., et al. (2006). Imaging synaptic inhibition in transgenic mice expressing the chloride indicator, Clomeleon. Brain Cell Biology, 35, 207–228.

    Google Scholar 

  217. Grimley, J. S., Li, L., Wang, W., et al. (2013). Visualization of synaptic inhibition with an optogenetic sensor developed by cell-free protein engineering automation. The Journal of Neuroscience: The Official Journal of the Society for Neuroscience, 33, 16297–16309.

    Google Scholar 

  218. Marblestone, A. H., Zamft, B. M., Maguire, Y. G., et al. (2013). Physical principles for scalable neural recording. Frontiers in Computional Neuroscience, 7, 137.

    Google Scholar 

  219. Caravaca-Aguirre, A. M., Niv, E., Conkey, D. B., & Piestun, R. (2013). Real-time resilient focusing through a bending multimode fiber. Optics Express, 21, 12881–12887.

    Google Scholar 

  220. Zorzos, A. N., Boyden, E. S., & Fonstad, C. G. (2010). Multiwaveguide implantable probe for light delivery to sets of distributed brain targets. Optics Letters, 35, 4133–4135.

    ADS  Google Scholar 

  221. Zorzos, A. N., Scholvin, J., Boyden, E. S., & Fonstad, C. G. (2012). Three-dimensional multiwaveguide probe array for light delivery to distributed brain circuits. Optics Letters, 37, 4841–4843.

    ADS  Google Scholar 

  222. Conkey, D. B., Caravaca-Aguirre, A. M., & Piestun, R. (2012). High-speed scattering medium characterization with application to focusing light through turbid media. Optics Express, 20, 1733–1740.

    ADS  Google Scholar 

  223. Keller, P. J., Schmidt, A. D., Wittbrodt, J., & Stelzer, E. H. (2008). Reconstruction of zebrafish early embryonic development by scanned light sheet microscopy. Science, 322, 1065–1069.

    ADS  Google Scholar 

  224. Abrahamsson, S., Chen, J., Hajj, B., et al. (2013). Fast multicolor 3D imaging using aberration-corrected multifocus microscopy. Nature Methods, 10, 60–63.

    Google Scholar 

  225. Quirin, S., Peterka, D. S., & Yuste, R. (2013). Instantaneous three-dimensional sensing using spatial light modulator illumination with extended depth of field imaging. Optics Express, 21, 16007–16021.

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yongxin Zhao Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Zhao, Y., Campbell, R. (2015). Fluorescent Proteins for Neuronal Imaging. In: Douglass, A. (eds) New Techniques in Systems Neuroscience. Biological and Medical Physics, Biomedical Engineering. Springer, Cham. https://doi.org/10.1007/978-3-319-12913-6_3

Download citation

Publish with us

Policies and ethics