Fluorescent Proteins for Neuronal Imaging

  • Yongxin Zhao
  • Robert E. Campbell
Part of the Biological and Medical Physics, Biomedical Engineering book series (BIOMEDICAL)


Over the past two decades, the growing selection of engineered fluorescent proteins have helped drive a revolution in the ability of researchers to image protein localization and biochemical dynamics in live cells in real time. Although the fluorescent proteins were long preceded by other fluorophores compatible with live cell imaging, the fact that fluorescent proteins are fully genetically encoded has enabled them to be applied in applications that would not otherwise be possible. In particular, fluorescent proteins have enabled the creation of transgenic animals in which specific neuronal cell types are uniquely and fluorescently labeled. Furthermore, through the use of highly engineered fluorescent proteins that change their fluorescence in response to a change in calcium ion concentration or membrane potential, fluorescent proteins have enabled high resolution minimally invasive imaging of neuronal activity in model organisms. In this chapter we will provide an overview of fluorescent protein technology and detail the technological developments that have made such experiments possible. Particular emphasis will be placed on the development of strategies for engineering Ca2+ and voltage indicators, and the latest breakthroughs in these directions will be highlighted.


Fluorescent Protein Yellow Fluorescent Protein Bimolecular Fluorescence Complementation Bioluminescence Resonance Energy Transfer Chromophore Structure 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Shimomura, O., Johnson, F. H., & Saiga, Y. (1962). Extraction, purification and properties of aequorin, a bioluminescent protein from luminous hydromedusan, Aequorea. Journal of Cellular and Comparative Physiology, 59, 223–239.Google Scholar
  2. 2.
    Yang, F., Moss, L. G., & Phillips, G. N. J. (1996). The molecular structure of green fluorescent protein. Nature Biotechnology, 14, 1246–1251.Google Scholar
  3. 3.
    Ormö, M., Cubitt, A. B., Kallio, K., et al. (1996). Crystal structure of the Aequorea victoria green fluorescent protein. Science, 273, 1392–1395.ADSGoogle Scholar
  4. 4.
    Tsien, R. Y. (1998). The green fluorescent protein. Annual Review of Biochemistry, 67, 509–544.Google Scholar
  5. 5.
    Chalfie, M., Tu, Y., Euskirchen, G., et al. (1994). Green fluorescent protein as a marker for gene-expression. Science, 263, 802–805.ADSGoogle Scholar
  6. 6.
    Inouye, S., & Tsuji, F. I. (1994). Aequorea green fluorescent protein expression of the gene and fluorescence characteristics of the recombinant protein. FEBS Letters, 341, 277–280.Google Scholar
  7. 7.
    Cormack, B. P., Valdivia, R. H., & Falkow, S. (1996). FACS-optimized mutants of the green fluorescent protein (GFP). Gene, 173, 33–38.Google Scholar
  8. 8.
    Crameri, A., Whitehorn, E. A., Tate, E., & Stemmer, W. P. (1996). Improved green fluorescent protein by molecular evolution using DNA shuffling. Nature Biotechnology, 14, 315–319.Google Scholar
  9. 9.
    Heim, R., Cubitt, A. B., & Tsien, R. Y. (1995). Improved green fluorescence. Nature, 373, 663–664.ADSGoogle Scholar
  10. 10.
    Mishin, A. S., Subach, F. V., Yampolsky, I. V., et al. (2008). The first mutant of the Aequorea victoria green fluorescent protein that forms a red chromophore. Biochemistry, 47, 4666–4673.Google Scholar
  11. 11.
    Matz, M. V., Fradkov, A. F., Labas, Y. A., et al. (1999). Fluorescent proteins from nonbioluminescent Anthozoa species. Nature Biotechnology, 17, 969–973.Google Scholar
  12. 12.
    Wiedenmann, J., Schenk, A., Rocker, C., et al. (2002). A far-red fluorescent protein with fast maturation and reduced oligomerization tendency from Entacmaea quadricolor (Anthozoa, Actinaria). Proceedings of the National Academy of Sciences of the United States of America, 99, 11646–11651.ADSGoogle Scholar
  13. 13.
    Deliolanis, N. C., Kasmieh, R., Wurdinger, T., et al. (2008). Performance of the red-shifted fluorescent proteins in deep-tissue molecular imaging applications. Journal of Biomedical Optics, 13, 044008.Google Scholar
  14. 14.
    Weissleder, R. (2001). A clearer vision for in vivo imaging. Nature Biotechnology, 19, 316–317.Google Scholar
  15. 15.
    Ntziachristos, V. (2006). Fluorescence molecular imaging. Annual Review of Biomedical Engineering, 8, 1–33.Google Scholar
  16. 16.
    Davidson, M. W., & Campbell, R. E. (2009). Engineered fluorescent proteins: Innovations and applications. Nature Methods, 6, 713–717.Google Scholar
  17. 17.
    Shcherbakova, D. M., Subach, O. M., & Verkhusha, V. V. (2012). Red fluorescent proteins: Advanced imaging applications and future design. Angewandte Chemie (International ed. in English), 51, 10724–10738.Google Scholar
  18. 18.
    Shcherbo, D., Shemiakina, I. I., Ryabova, A. V., et al. (2010). Near-infrared fluorescent proteins. Nature Methods, 7, 827–829.Google Scholar
  19. 19.
    Shcherbakova, D. M., & Verkhusha, V. V. (2013). Near-infrared fluorescent proteins for multicolor in vivo imaging. Nature Methods, 10, 751–754.Google Scholar
  20. 20.
    Drobizhev, M., Makarov, N. S., Tillo, S. E., et al. (2011). Two-photon absorption properties of fluorescent proteins. Nature Methods, 8, 393–399.Google Scholar
  21. 21.
    So, P. T. C., Dong, C. Y., Masters, B. R., & Berland, K. M. (2000). Two-photon excitation fluorescence microscopy. Annual Review of Biomedical Engineering, 2, 399–429.Google Scholar
  22. 22.
    Shimomura, O. (1979). Structure of the chromophore of Aequorea green fluorescent protein. FEBS Letters, 104, 220–222.Google Scholar
  23. 23.
    Lemay, N. P., Morgan, A. L., Archer, E. J., et al. (2008). The role of the tight-turn, broken hydrogen bonding, Glu222 and Arg96 in the post-translational green fluorescent protein chromophore formation. Chemical Physics, 348, 152–160.ADSGoogle Scholar
  24. 24.
    Heim, R., Prasher, D. C., & Tsien, R. Y. (1994). Wavelength mutations and posttranslational autoxidation of green fluorescent protein. Proceedings of the National Academy of Sciences of the United States of America, 91, 12501–12504.ADSGoogle Scholar
  25. 25.
    Cubitt, A. B., Heim, R., Adams, S. R., et al. (1995). Understanding, improving and using green fluorescent proteins. Trends in Biochemical Sciences, 20, 448–455.Google Scholar
  26. 26.
    Wachter, R. M., Watkins, J. L., & Kim, H. (2010). Mechanistic diversity of red fluorescence acquisition by GFP-like proteins. Biochemistry, 49, 7417–7427.Google Scholar
  27. 27.
    Reid, B. G., & Flynn, G. C. (1997). Chromophore formation in green fluorescent protein. Biochemistry, 36, 6786–6791.Google Scholar
  28. 28.
    Barondeau, D. P., Putnam, C. D., Kassmann, C. J., et al. (2003). Mechanism and energetics of green fluorescent protein chromophore synthesis revealed by trapped intermediate structures. Proceedings of the National Academy of Sciences of the United States of America, 100, 12111–12116.ADSGoogle Scholar
  29. 29.
    Rosenow, M. A., Huffman, H. A., Phail, M. E., & Wachter, R. M. (2004). The crystal structure of the Y66L variant of green fluorescent protein supports a cyclization-oxidation-dehydration mechanism for chromophore maturation. Biochemistry, 43, 4464–4472.Google Scholar
  30. 30.
    Petersen, J., Wilmann, P. G., Beddoe, T., et al. (2003). The 2.0-angstrom crystal structure of eqFP611, a far red fluorescent protein from the sea anemone Entacmaea quadricolor. The Journal of Biological Chemistry, 278, 44626–44631.Google Scholar
  31. 31.
    Subach, F. V., & Verkhusha, V. V. (2012). Chromophore transformations in red fluorescent proteins. Chemical Reviews, 112, 4308–4327.Google Scholar
  32. 32.
    Miyawaki, A., Shcherbakova, D. M., & Verkhusha, V. V. (2012). Red fluorescent proteins: Chromophore formation and cellular applications. Current Opinion in Structural Biology, 22, 679–688.Google Scholar
  33. 33.
    Gross, L. A., Baird, G. S., Hoffman, R. C., et al. (2000). The structure of the chromophore within DsRed, a red fluorescent protein from coral. Proceedings of the National Academy of Sciences of the United States of America, 97, 11990–11995.ADSGoogle Scholar
  34. 34.
    Verkhusha, V. V., & Lukyanov, K. A. (2004). The molecular properties and applications of Anthozoa fluorescent proteins and chromoproteins. Nature Biotechnology, 22, 289–296.Google Scholar
  35. 35.
    Strack, R. L., Strongin, D. E., Mets, L., et al. (2010). Chromophore formation in DsRed occurs by a branched pathway. Journal of the American Chemical Society, 132, 8496–8505.Google Scholar
  36. 36.
    Pletnev, S., Subach, F. V., Dauter, Z., et al. (2010). Understanding blue-to-red conversion in monomeric fluorescent timers and hydrolytic degradation of their chromophores. Journal of the American Chemical Society, 132, 2243–2253.Google Scholar
  37. 37.
    Subach, O. M., Patterson, G. H., Ting, L. M., et al. (2011). A photoswitchable orange-to-far-red fluorescent protein, PSmOrange. Nature Methods, 8, 771–777.Google Scholar
  38. 38.
    Cotlet, M., Hofkens, J., Habuchi, S., et al. (2001). Identification of different emitting species in the red fluorescent protein DsRed by means of ensemble and single-molecule spectroscopy. Proceedings of the National Academy of Sciences of the United States of America, 98, 14398–14403.ADSGoogle Scholar
  39. 39.
    Tomosugi, W., Matsuda, T., Tani, T., et al. (2009). An ultramarine fluorescent protein with increased photostability and pH insensitivity. Nature Methods, 6, 351–353.Google Scholar
  40. 40.
    Dedecker, P., De Schryver, F. C., & Hofkens, J. (2013). Fluorescent proteins: Shine on, you crazy diamond. Journal of the American Chemical Society, 135, 2387–2402.Google Scholar
  41. 41.
    Bokman, S. H., & Ward, W. W. (1981). Renaturation of Aequorea gree-fluorescent protein. Biochemical and Biophysical Research Communications, 101, 1372–1380.Google Scholar
  42. 42.
    Meech, S. R. (2009). Excited state reactions in fluorescent proteins. Chemical Society Reviews, 38, 2922–2934.Google Scholar
  43. 43.
    Tolbert, L. M., Baldridge, A., Kowalik, J., & Solntsev, K. M. (2012). Collapse and recovery of green fluorescent protein chromophore emission through topological effects. Accounts of Chemical Research, 45, 171–181.Google Scholar
  44. 44.
    Niwa, H., Inouye, S., Hirano, T., et al. (1996). Chemical nature of the light emitter of the Aequorea green fluorescent protein. Proceedings of the National Academy of Sciences of the United States of America, 93, 13617–13622.ADSGoogle Scholar
  45. 45.
    Litvinenko, K. L., Webber, N. M., & Meech, S. R. (2001). An ultrafast polarisation spectroscopy study of internal conversion and orientational relaxation of the chromophore of the green fluorescent protein. Chemical Physics Letters, 346, 47–53.ADSGoogle Scholar
  46. 46.
    Webber, N. M., Litvinenko, K. L., & Meech, S. R. (2001). Radiationless relaxation in a synthetic analogue of the green fluorescent protein chromophore. Journal of Physical Chemistry B, 105, 8036–8039.Google Scholar
  47. 47.
    Vengris, M., van Stokkum I. H., He, X., et al. (2004). Ultrafast excited and ground-state dynamics of the green fluorescent protein chromophore in solution. Journal of Physical Chemistry A, 108, 4587–4598.ADSGoogle Scholar
  48. 48.
    Stavrov, S. S., Solntsev, K. M., Tolbert, L. M., & Huppert, D. (2006). Probing the decay coordinate of the green fluorescent protein: Arrest of cis-trans isomerization by the protein significantly narrows the fluorescence spectra. Journal of the American Chemical Society, 128, 1540–1546.Google Scholar
  49. 49.
    Ward, W. W., Prentice, H. J., Roth, A. F., et al. (1982). Spectral perturbations of the Aequorea green-fluorescent protein. Photochemistry and Photobiology, 35, 803–808.Google Scholar
  50. 50.
    Ai, H., Shaner, N. C., Cheng, Z., et al. (2007). Exploration of new chromophore structures leads to the identification of improved blue fluorescent proteins. Biochemistry, 46, 5904–5910.Google Scholar
  51. 51.
    Chattoraj, M., King, B. A., Bublitz, G. U., & Boxer, S. G. (1996). Ultra-fast excited state dynamics in green fluorescent protein: Multiple states and proton transfer. Proceedings of the National Academy of Sciences of the United States of America, 93, 8362–8367.ADSGoogle Scholar
  52. 52.
    Brejc, K., Sixma, T. K., Kitts, P. A., et al. (1997). Structural basis for dual excitation and photoisomerization of the Aequorea victoria green fluorescent protein. Proceedings of the National Academy of Sciences of the United States of America, 94, 2306–2311.ADSGoogle Scholar
  53. 53.
    Kogure, T., Kawano, H., Abe, Y., & Miyawaki, A. (2008). Fluorescence imaging using a fluorescent protein with a large Stokes shift. Methods (San Diego, California), 45, 223–226.Google Scholar
  54. 54.
    Piatkevich, K. D., Hulit, J., Subach, O. M., et al. (2010). Monomeric red fluorescent proteins with a large Stokes shift. Proceedings of the National Academy of Sciences of the United States of America, 107, 5369–5374.ADSGoogle Scholar
  55. 55.
    Baird, G. S., Zacharias, D. A., & Tsien, R. Y. (2000). Biochemistry, mutagenesis, and oligomerization of DsRed, a red fluorescent protein from coral. Proceedings of the National Academy of Sciences of the United States of America, 97, 11984–11989.ADSGoogle Scholar
  56. 56.
    Yarbrough, D., Wachter, R. M., Kallio, K., et al. (2001). Refined crystal structure of DsRed, a red fluorescent protein from coral, at 2.0-Å resolution. Proceedings of the National Academy of Sciences of the United States of America, 98, 462–467.ADSGoogle Scholar
  57. 57.
    Lauf, U., Lopez, P., & Falk, M. M. (2001). Expression of fluorescently tagged connexins: A novel approach to rescue function of oligomeric DsRed-tagged proteins. FEBS Letters, 498, 11–15.Google Scholar
  58. 58.
    Gavin, P., Devenish, R. J., & Prescott, M. (2002). An approach for reducing unwanted oligomerisation of DsRed fusion proteins. Biochemical and Biophysical Research Communications, 298, 707–713.Google Scholar
  59. 59.
    Soling, A., Simm, A., & Rainov, N. (2002). Intracellular localization of Herpes simplex virus type 1 thymidine kinase fused to different fluorescent proteins depends on choice of fluorescent tag. FEBS Letters, 527, 153–158.Google Scholar
  60. 60.
    Campbell, R. E., Tour, O., Palmer, A. E., et al. (2002). A monomeric red fluorescent protein. Proceedings of the National Academy of Sciences of the United States of America, 99, 7877–7882.ADSGoogle Scholar
  61. 61.
    Shaner, N. C., Campbell, R. E., Steinbach, P. A., et al. (2004). Improved monomeric red, orange and yellow fluorescent proteins derived from Discosoma sp. red fluorescent protein. Nature Biotechnology, 22, 1567–1572.Google Scholar
  62. 62.
    Shaner, N. C., Steinbach, P. A., & Tsien, R. Y. (2005). A guide to choosing fluorescent proteins. Nature Methods, 2, 905–909.Google Scholar
  63. 63.
    Shaner, N. C., Lin, M. Z., McKeown, M. R., et al. (2008). Improving the photostability of bright monomeric orange and red fluorescent proteins. Nature Methods, 5, 545–551.Google Scholar
  64. 64.
    Ai, H., Henderson, J. N., Remington, S. J., & Campbell, R. E. (2006). Directed evolution of a monomeric, bright and photostable version of Clavularia cyan fluorescent protein: Structural characterization and applications in fluorescence imaging. The Biochemical Journal, 400, 531–540.Google Scholar
  65. 65.
    Hoi, H., Howe, E. S., Ding, Y., et al. (2013). An engineered monomeric zoanthus sp yellow fluorescent protein. Chemistry & Biology, 20, 1296–1304.Google Scholar
  66. 66.
    Yanushevich, Y. G., Staroverov, D. B., Savitsky, A. P., et al. (2002). A strategy for the generation of non-aggregating mutants of Anthozoa fluorescent proteins. FEBS Letters, 511, 11–14.Google Scholar
  67. 67.
    Patterson, G. H., & Lippincott-Schwartz, J. (2002). A photoactivatable GFP for selective photolabeling of proteins and cells. Science, 297, 1873–1877.ADSGoogle Scholar
  68. 68.
    Shaner, N. C., Lin, M. Z., McKeown, M. R., et al. (2009). Evaluating and improving the photostability of fluorescent proteins. Proceedings of the SPIE, 7191, 719105.Google Scholar
  69. 69.
    Shaner, N. C., Patterson, G. H., & Davidson, M. W. (2007). Advances in fluorescent protein technology. Journal of Cell Science, 120, 4247–4260.Google Scholar
  70. 70.
    Lubbeck, J. L., Dean, K. M., Ma, H., et al. (2012). Microfluidic flow cytometer for quantifying photobleaching of fluorescent proteins in cells. Analytical Chemistry, 84, 3929–3937.Google Scholar
  71. 71.
    Shcherbo, D., Murphy, C. S., Ermakova, G. V., et al. (2009). Far-red fluorescent tags for protein imaging in living tissues. The Biochemical Journal, 418, 567–574.Google Scholar
  72. 72.
    Ando, R., Mizuno, H., & Miyawaki, A. (2004). Regulated fast nucleocytoplasmic shuttling observed by reversible protein highlighting. Science, 306, 1370–1373.ADSGoogle Scholar
  73. 73.
    David, C. C., Dedecker, P., Cremer, G. D., et al. (2012). Spectroscopic characterization of Venus at the single molecule level. Photochemical & Photobiological Sciences: Official Journal of the European Photochemistry Association and the European Society for Photobiology, 11, 358–363.Google Scholar
  74. 74.
    Marchant, J. S., Stutzmann, G. E., Leissring, M. A., et al. (2001). Multiphoton-evoked color change of DsRed as an optical highlighter for cellular and subcellular labeling. Nature Biotechnology, 19, 645–649.Google Scholar
  75. 75.
    Bogdanov, A. M., Mishin, A. S., Yampolsky, I. V., et al. (2009). Green fluorescent proteins are light-induced electron donors. Nature Chemical Biology, 5, 459–461.Google Scholar
  76. 76.
    Hoi, H., Shaner, N. C., Davidson, M. W., et al. (2010). A monomeric photoconvertible fluorescent protein for imaging of dynamic protein localization. Journal of Molecular Biology, 401, 776–791.Google Scholar
  77. 77.
    Kremers, G. J., Hazelwood, K. L., Murphy, C. S., et al. (2009). Photoconversion in orange and red fluorescent proteins. Nature Methods, 6, 355–358.Google Scholar
  78. 78.
    Ai, H. W., Baird, M. A., Shen, Y., et al. (2014). Engineering and characterizing monomeric fluorescent proteins for live-cell imaging applications. Nature Protocols, 9, 910–928.Google Scholar
  79. 79.
    Pedelacq, J. D., Cabantous, S., Tran, T., et al. (2006). Engineering and characterization of a superfolder green fluorescent protein. Nature Biotechnology, 24, 79–88.Google Scholar
  80. 80.
    Goedhart, J., van Weeren L., Hink, M. A., et al. (2010). Bright cyan fluorescent protein variants identified by fluorescence lifetime screening. Nature Methods, 7, 137–139.Google Scholar
  81. 81.
    Grotjohann, T., Testa, I., Leutenegger, M., et al. (2011). Diffraction-unlimited all-optical imaging and writing with a photochromic GFP. Nature, 478, 204–208.ADSGoogle Scholar
  82. 82.
    Ai, H., Hazelwood, K. L., Davidson, M. W., & Campbell, R. E. (2008). Fluorescent protein FRET pairs for ratiometric imaging of dual biosensors. Nature Methods, 5, 401–403.Google Scholar
  83. 83.
    Esvelt, K. M., Carlson, J. C., & Liu, D. R. (2011). A system for the continuous directed evolution of biomolecules. Nature, 472, 499–503.ADSGoogle Scholar
  84. 84.
    Agresti, J. J., Antipov, E., Abate, A. R., et al. (2010). Ultrahigh-throughput screening in drop-based microfluidics for directed evolution. Proceedings of the National Academy of Sciences of the United States of America, 107, 4004–4009.ADSGoogle Scholar
  85. 85.
    Lubbeck, J. L., Dean, K. M., Davis, L. M., et al. (2011). A microfluidic cell sorter for directed evolution of fluorescent proteins based on dark-state conversion and photobleaching. Biophysical Journal, 100, 175a.ADSGoogle Scholar
  86. 86.
    Davis, L. M., Lubbeck, J. L., Dean, K. M., et al. (2013). Microfluidic cell sorter for use in developing red fluorescent proteins with improved photostability. Lab on a Chip, 13, 2320–2327.Google Scholar
  87. 87.
    Zhao, Y., Abdelfattah, A. S., Zhao, Y., et al. (2014). Microfluidic cell sorter-aided directed evolution of a protein-based calcium ion indicator with an inverted fluorescent response. Integrative Biology, 6, 714–725.Google Scholar
  88. 88.
    Alford, S. C., Wu, J., Zhao, Y., et al. (2013). Optogenetic reporters. Biology of the Cell, 105, 14–29.Google Scholar
  89. 89.
    Miyawaki, A., Llopis, J., Heim, R., et al. (1997). Fluorescent indicators for Ca2+ based on green fluorescent proteins and calmodulin. Nature, 388, 882–887.ADSGoogle Scholar
  90. 90.
    Kerppola, T. K. (2008). Bimolecular fluorescence complementation (BiFC) analysis as a probe of protein interactions in living cells. Annual Review of Biophysics, 37, 465–487.Google Scholar
  91. 91.
    Ghosh, I., Hamilton, A. D., & Regan, L. (2000). Antiparallel leucine zipper-directed protein reassembly: Application to the green fluorescent protein. Journal of the American Chemical Society, 122, 5658–5659.Google Scholar
  92. 92.
    Nagai, T., Sawano, A., Park, E. S., & Miyawaki, A. (2001). Circularly permuted green fluorescent proteins engineered to sense Ca2+. Proceedings of the National Academy of Sciences of the United States of America, 98, 3197–3202.ADSGoogle Scholar
  93. 93.
    Siegel, M. S., & Isacoff, E. Y. (1997). A genetically encoded optical probe of membrane voltage. Neuron, 19, 735–741.Google Scholar
  94. 94.
    Baird, G. S., Zacharias, D. A., & Tsien, R. Y. (1999). Circular permutation and receptor insertion within green fluorescent proteins. Proceedings of the National Academy of Sciences of the United States of America, 96, 11241–11246.ADSGoogle Scholar
  95. 95.
    Nakai, J., Ohkura, M., & Imoto, K. (2001). A high signal-to-noise Ca2+ probe composed of a single green fluorescent protein. Nature Biotechnology, 19, 137–141.Google Scholar
  96. 96.
    Saito, K., Chang, Y. F., Horikawa, K., et al. (2012). Luminescent proteins for high-speed single-cell and whole-body imaging. Nature Communications, 3, 1262.ADSGoogle Scholar
  97. 97.
    Alford, S. C., Abdelfattah, A. S., Ding, Y., & Campbell, R. E. (2012). A fluorogenic red fluorescent protein heterodimer. Chemistry & Biology, 19, 353–360.Google Scholar
  98. 98.
    Alford, S. C., Ding, Y., Simmen, T., & Campbell, R. E. (2012). Dimerization-dependent green and yellow fluorescent proteins. ACS Synthetic Biology, 1, 569–575.Google Scholar
  99. 99.
    Forster, T. (1959). Transfer mechanisms of electronic excitation. Discussions of the Faraday Society, 27, 7–17.Google Scholar
  100. 100.
    Grynkiewicz, G., Poenie, M., & Tsien, R. Y. (1985). A new generation of Ca2+ indicators with greatly improved fluorescence properties. The Journal of Biological Chemistry, 260, 3440–3450.Google Scholar
  101. 101.
    Zaccolo, M., De Giorgi, F., Cho, C. Y., et al. (2000). A genetically encoded, fluorescent indicator for cyclic AMP in living cells. Nature Cell Biology, 2, 25–29.Google Scholar
  102. 102.
    Akemann, W., Mutoh, H., Perron, A., et al. (2012). Imaging neural circuit dynamics with a voltage-sensitive fluorescent protein. Journal of Neurophysiology, 108, 2323–2337.Google Scholar
  103. 103.
    Zhang, J., Ma, Y., Taylor, S. S., & Tsien, R. Y. (2001). Genetically encoded reporters of protein kinase A activity reveal impact of substrate tethering. Proceedings of the National Academy of Sciences of the United States of America, 98, 14997–15002.ADSGoogle Scholar
  104. 104.
    Ting, A. Y., Kain, K. H., Klemke, R. L., & Tsien, R. Y. (2001). Genetically encoded fluorescent reporters of protein tyrosine kinase activities in living cells. Proceedings of the National Academy of Sciences of the United States of America, 98, 15003–15008.ADSGoogle Scholar
  105. 105.
    Fehr, M., Frommer, W. B., & Lalonde, S. (2002). Visualization of maltose uptake in living yeast cells by fluorescent nanosensors. Proceedings of the National Academy of Sciences of the United States of America, 99, 9846–9851.ADSGoogle Scholar
  106. 106.
    Wu, C., Mino, K., Akimoto, H., et al. (2009). In vivo far-red luminescence imaging of a biomarker based on BRET from Cypridina bioluminescence to an organic dye. Proceedings of the National Academy of Sciences of the United States of America, 106, 15599–15603.ADSGoogle Scholar
  107. 107.
    Chu, J., Zhang, Z., Zheng, Y., et al. (2009). A novel far-red bimolecular fluorescence complementation system that allows for efficient visualization of protein interactions under physiological conditions. Biosensors & Bioelectronics, 25, 234–239.Google Scholar
  108. 108.
    Fan, J. Y., Cui, Z. Q., Wei, H. P., et al. (2008). Split mCherry as a new red bimolecular fluorescence complementation system for visualizing protein-protein interactions in living cells. Biochemical and Biophysical Research Communications, 367, 47–53.Google Scholar
  109. 109.
    Jach, G., Pesch, M., Richter, K., et al. (2006). An improved mRFP1 adds red to bimolecular fluorescence complementation. Nature Methods, 3, 597–600.Google Scholar
  110. 110.
    Ohashi, K., Kiuchi, T., Shoji, K., et al. (2012). Visualization of cofilin-actin and Ras-Raf interactions by bimolecular fluorescence complementation assays using a new pair of split Venus fragments. Biotechniques, 52, 45–50.Google Scholar
  111. 111.
    Shyu, Y. J., Liu, H., Deng, X., & Hu, C. D. (2006). Identification of new fluorescent protein fragments for bimolecular fluorescence complementation analysis under physiological conditions. Biotechniques, 40, 61–66.Google Scholar
  112. 112.
    Zhao, Y., Araki, S., Wu, J., et al. (2011). An expanded palette of genetically encoded Ca2+ indicators. Science, 333, 1888–1891.ADSGoogle Scholar
  113. 113.
    Miesenböck, G., De Angelis, D. A., & Rothman, J. E. (1998). Visualizing secretion and synaptic transmission with pH-sensitive green fluorescent proteins. Nature, 394, 192–195.ADSGoogle Scholar
  114. 114.
    Kuner, T., & Augustine, G. J. (2000). A genetically encoded ratiometric indicator for chloride: Capturing chloride transients in cultured hippocampal neurons. Neuron, 27, 447–459.Google Scholar
  115. 115.
    Eli, P., & Chakrabartty, A. (2006). Variants of DsRed fluorescent protein: Development of a copper sensor. Protein Science: A Publication of the Protein Society, 15, 2442–2447.Google Scholar
  116. 116.
    Hanson, G. T., Aggeler, R., Oglesbee, D., et al. (2004). Investigating mitochondrial redox potential with redox-sensitive green fluorescent protein indicators. The Journal of Biological Chemistry, 279, 13044–13053.Google Scholar
  117. 117.
    Dooley, C. T., Dore, T. M., Hanson, G. T., et al. (2004). Imaging dynamic redox changes in mammalian cells with green fluorescent protein indicators. The Journal of Biological Chemistry, 279, 22284–22293.Google Scholar
  118. 118.
    Ostergaard, H., Henriksen, A., Hansen, F. G., & Winther, J. R. (2001). Shedding light on disulfide bond formation: Engineering a redox switch in green fluorescent protein. The EMBO Journal, 20, 5853–5862.Google Scholar
  119. 119.
    Tang, S., Wong, H.-C., Wang, Z.-M., et al. (2011). Design and application of a class of sensors to monitor Ca2+ dynamics in high Ca2+ concentration cellular compartments. Proceedings of the National Academy of Sciences of the United States of America, 108, 16265–16270.ADSGoogle Scholar
  120. 120.
    Chen, S., Chen, Z. J., Ren, W., & Ai, H. W. (2012). Reaction-based genetically encoded fluorescent hydrogen sulfide sensors. Journal of the American Chemical Society, 134, 9589–9592.Google Scholar
  121. 121.
    Chen, Z. J., Ren, W., Wright, Q. E., & Ai, H. W. (2013). Genetically encoded fluorescent probe for the selective detection of peroxynitrite. Journal of the American Chemical Society, 135, 14940–14943.Google Scholar
  122. 122.
    Topell, S., Hennecke, J., & Glockshuber, R. (1999). Circularly permuted variants of the green fluorescent protein. FEBS Letters, 457, 283–289.Google Scholar
  123. 123.
    Griesbeck, O., Baird, G. S., Campbell, R. E., et al. (2001). Reducing the environmental sensitivity of yellow fluorescent protein. Mechanism and applications. The Journal of Biological Chemistry, 276, 29188–29194.Google Scholar
  124. 124.
    Wang, Q., Shui, B., Kotlikoff, M. I., & Sondermann, H. (2008). Structural basis for calcium sensing by GCaMP2. Structure (London, England: 1993), 16, 1817–1827.Google Scholar
  125. 125.
    Akerboom, J., Rivera, J. D., Guilbe, M. M., et al. (2009). Crystal structures of the GCaMP calcium sensor reveal the mechanism of fluorescence signal change and aid rational design. The Journal of Biological Chemistry, 284, 6455–6464.Google Scholar
  126. 126.
    Helmchen, F., & Denk, W. (2005). Deep tissue two-photon microscopy. Nature Methods, 2, 932–940.Google Scholar
  127. 127.
    Miesenböck, G., & Kevrekidis, I. G. (2005). Optical imaging and control of genetically designated neurons in functioning circuits. Annual Review of Neuroscience, 28, 533–563.Google Scholar
  128. 128.
    Svoboda, K., & Yasuda, R. (2006). Principles of two-photon excitation microscopy and its applications to neuroscience. Neuron, 50, 823–839.Google Scholar
  129. 129.
    Marcaggi, P., Mutoh, H., Dimitrov, D., et al. (2009). Optical measurement of mGluR1 conformational changes reveals fast activation, slow deactivation, and sensitization. Proceedings of the National Academy of Sciences of the United States of America, 106, 11388–11393.ADSGoogle Scholar
  130. 130.
    Bozza, T., McGann, J. P., Mombaerts, P., & Wachowiak, M. (2004). In vivo imaging of neuronal activity by targeted expression of a genetically encoded probe in the mouse. Neuron, 42, 9–21.Google Scholar
  131. 131.
    Hires, S. A., Zhu, Y., & Tsien, R. Y. (2008). Optical measurement of synaptic glutamate spillover and reuptake by linker optimized glutamate-sensitive fluorescent reporters. Proceedings of the National Academy of Sciences of the United States of America, 105, 4411–4416.ADSGoogle Scholar
  132. 132.
    Kralj, J. M., Douglass, A. D., Hochbaum, D. R., et al. (2012). Optical recording of action potentials in mammalian neurons using a microbial rhodopsin. Nature Methods, 9, 90–95.Google Scholar
  133. 133.
    Dimitrov, D., He, Y., Mutoh, H., et al. (2007). Engineering and characterization of an enhanced fluorescent protein voltage sensor. PLoS ONE, 2, e440.ADSGoogle Scholar
  134. 134.
    Tsutsui, H., Karasawa, S., Okamura, Y., & Miyawaki, A. (2008). Improving membrane voltage measurements using FRET with new fluorescent proteins. Nature Methods, 5, 683–685.Google Scholar
  135. 135.
    Akemann, W., Mutoh, H., Perron, A., et al. (2010). Imaging brain electric signals with genetically targeted voltage-sensitive fluorescent proteins. Nature Methods, 7, 643–649.Google Scholar
  136. 136.
    Chen, T. W., Wardill, T. J., Sun, Y., et al. (2013). Ultrasensitive fluorescent proteins for imaging neuronal activity. Nature, 499, 295–300.ADSGoogle Scholar
  137. 137.
    Thestrup, T., Litzlbauer, J., Bartholomäus, I., et al. (2014). Optimized ratiometric calcium sensors for functional in vivo imaging of neurons and T lymphocytes. Nature Methods 11, 175–182.Google Scholar
  138. 138.
    Wu, J., Liu, L., Matsuda, T., et al. (2013). Improved orange and red Ca2+ indicators and photophysical considerations for optogenetic applications. ACS Chemical Neuroscience, 4, 963–972.Google Scholar
  139. 139.
    Berridge, M. J. (1998). Neuronal calcium signaling. Neuron, 21, 13–26.Google Scholar
  140. 140.
    Berridge, M. J., Lipp, P., & Bootman, M. D. (2000). The versatility and universality of calcium signalling. Nature Reviews. Molecular Cell Biology, 1, 11–21.Google Scholar
  141. 141.
    Kerr, R., Lev-Ram, V., Baird, G., et al. (2000). Optical imaging of calcium transients in neurons and pharyngeal muscle of C elegans. Neuron, 26, 583–594.Google Scholar
  142. 142.
    Garaschuk, O., Milos, R.-I., Grienberger, C., et al. (2006). Optical monitoring of brain function in vivo: From neurons to networks. Pflügers Archiv European Journal of Physiology, 453, 385–396.Google Scholar
  143. 143.
    Göbel, W., & Helmchen, F. (2007). In vivo calcium imaging of neural network function. Physiology, 22, 358–365.Google Scholar
  144. 144.
    Mank, M., & Griesbeck, O. (2008). Genetically encoded calcium indicators. Chemical Reviews, 108, 1550–1564.Google Scholar
  145. 145.
    Tour, O., Adams, S. R., Kerr, R. A., et al. (2007). Calcium green FlAsH as a genetically targeted small-molecule calcium indicator. Nature Chemical Biology, 3, 423–431.Google Scholar
  146. 146.
    Griffin, B. A., Adams, S. R., & Tsien, R. Y. (1998). Specific covalent labeling of recombinant protein molecules inside live cells. Science, 281, 269–272.ADSGoogle Scholar
  147. 147.
    Adams, S. R., Campbell, R. E., Gross, L. A., et al. (2002). New biarsenical ligands and tetracysteine motifs for protein labeling in vitro and in vivo: Synthesis and biological applications. Journal of the American Chemical Society, 124, 6063–6076.Google Scholar
  148. 148.
    Gaietta, G., Deerinck, T. J., Adams, S. R., et al. (2002). Multicolor and electron microscopic imaging of connexin trafficking. Science, 296, 503–507.ADSGoogle Scholar
  149. 149.
    Romoser, V. A., Hinkle, P. M., & Persechini, A. (1997). Detection in living cells of Ca2+-dependent changes in the fluorescence emission of an indicator composed of two green fluorescent protein variants linked by a calmodulin-binding sequence A new class of fluorescent indicators. The Journal of Biological Chemistry, 272, 13270–13274.Google Scholar
  150. 150.
    Mank, M., Santos, A. F., Direnberger, S., et al. (2008). A genetically encoded calcium indicator for chronic in vivo two-photon imaging. Nature Methods, 5, 805–811.Google Scholar
  151. 151.
    Miyawaki, A., Griesbeck, O., Heim, R., & Tsien, R. Y. (1999). Dynamic and quantitative Ca2+ measurements using improved cameleons. Proceedings of the National Academy of Sciences of the United States of America, 96, 2135–2140.ADSGoogle Scholar
  152. 152.
    Nagai, T., Yamada, S., Tominaga, T., et al. (2004). Expanded dynamic range of fluorescent indicators for Ca2+ by circularly permuted yellow fluorescent proteins. Proceedings of the National Academy of Sciences of the United States of America, 101, 10554–10559.ADSGoogle Scholar
  153. 153.
    Horikawa, K., Yamada, Y., Matsuda, T., et al. (2010). Spontaneous network activity visualized by ultrasensitive Ca(2+) indicators, yellow Cameleon-Nano. Nature Methods, 7, 729–732.Google Scholar
  154. 154.
    Heim, N., & Griesbeck, O. (2004). Genetically encoded indicators of cellular calcium dynamics based on troponin C and green fluorescent protein. The Journal of Biological Chemistry, 279, 14280–14286.Google Scholar
  155. 155.
    Mank, M., Reiff, D. F., Heim, N., et al. (2006). A FRET-based calcium biosensor with fast signal kinetics and high fluorescence change. Biophysical Journal, 90, 1790–1796.ADSGoogle Scholar
  156. 156.
    Reiff, D. F., Ihring, A., Guerrero, G., et al. (2005). In vivo performance of genetically encoded indicators of neural activity in flies. The Journal of Neuroscience: The Official Journal of the Society for Neuroscience, 25, 4766–4778.Google Scholar
  157. 157.
    Díez-García, J., Matsushita, S., Mutoh, H., et al. (2005). Activation of cerebellar parallel fibers monitored in transgenic mice expressing a fluorescent Ca2+ indicator protein. The European Journal of Neuroscience, 22, 627–635.Google Scholar
  158. 158.
    Tian, L., Hires, S. A., Mao, T., et al. (2009). Imaging neural activity in worms, flies and mice with improved GCaMP calcium indicators. Nature Methods, 6, 875–881.Google Scholar
  159. 159.
    Gee, K. R., Brown, K. A., Chen, W. N. U., et al. (2000). Chemical and physiological characterization of fluo-4 Ca2+-indicator dyes. Cell Calcium, 27, 97–106.Google Scholar
  160. 160.
    Sun, X. R., Badura, A., Pacheco, D. A., et al. (2013). Fast GCaMPs for improved tracking of neuronal activity. Nature Communications, 4 Article number: 2170.Google Scholar
  161. 161.
    Ohkura, M., Sasaki, T., Kobayashi, C., et al. (2012). An improved genetically encoded red fluorescent Ca2+ indicator for detecting optically evoked action potentials. PLoS ONE, 7, e39933.Google Scholar
  162. 162.
    Akerboom, J., Calderón, N. C., Tian, L., et al. (2013). Genetically encoded calcium indicators for multi-color neural activity imaging and combination with optogenetics. Frontiers in Molecular Neuroscience, 6, 2.Google Scholar
  163. 163.
    Boyden, E. S., Zhang, F., Bamberg, E., et al. (2005). Millisecond-timescale, genetically targeted optical control of neural activity. Nature Neuroscience, 8, 1263–1268.Google Scholar
  164. 164.
    Wardill, T. J., Chen, T. W., Schreiter, E. R., et al. (2013). A neuron-based screening platform for optimizing genetically-encoded calcium indicators. PLoS ONE, 8, e77728.Google Scholar
  165. 165.
    Fiala, A., Spall, T., Diegelmann, S., et al. (2002). Genetically expressed Cameleon in Drosophila melanogaster is used to visualize olfactory information in projection neurons. Current Biology: CB, 12, 1877–1884.Google Scholar
  166. 166.
    Yu, D., Baird, G. S., Tsien, R. Y., & Davis, R. L. (2003). Detection of calcium transients in Drosophila mushroom body neurons with camgaroo reporters. The Journal of Neuroscience: The Official Journal of the Society for Neuroscience, 23, 64–72.zbMATHGoogle Scholar
  167. 167.
    Wang, J. W., Wong, A. M., Flores, J., et al. (2003). Two-photon calcium imaging reveals an odor-evoked map of activity in the fly brain. Cell, 112, 271–282.Google Scholar
  168. 168.
    Liu, L., Yermolaieva, O., Johnson, W. A., et al. (2003). Identification and function of thermosensory neurons in Drosophila larvae. Nature Neuroscience, 6, 267–273.Google Scholar
  169. 169.
    Higashijima, S.-I., Masino, M. A., Mandel, G., & Fetcho, J. R. (2003). Imaging neuronal activity during zebrafish behavior with a genetically encoded calcium indicator. Journal of Neurophysiology, 90, 3986–3997.Google Scholar
  170. 170.
    Hasan, M. T., Friedrich, R. W., Euler, T., et al. (2004). Functional fluorescent Ca2+ indicator proteins in transgenic mice under TET control. PLoS Biology, 2, e163.Google Scholar
  171. 171.
    Knöpfel, T. (2012). Genetically encoded optical indicators for the analysis of neuronal circuits. Nature Reviews. Neuroscience, 13, 687–700.Google Scholar
  172. 172.
    Díez-García, J., Akemann, W., & Knöpfel, T. (2007). In vivo calcium imaging from genetically specified target cells in mouse cerebellum. NeuroImage, 34, 859–869.Google Scholar
  173. 173.
    Qiu, D.-L., & Knöpfel, T. (2007). An NMDA receptor/nitric oxide cascade in presynaptic parallel fiber—Purkinje neuron long-term potentiation. The Journal of Neuroscience: The Official Journal of the Society for Neuroscience, 27, 3408–3415.Google Scholar
  174. 174.
    Qiu, D.-L., & Knöpfel, T. (2009). Presynaptically expressed long-term depression at cerebellar parallel fiber synapses. Pflügers ArchivEuropean Journal of Physiology, 457, 865–875.Google Scholar
  175. 175.
    Warp, E., Agarwal, G., Wyart, C., et al. (2012). Emergence of patterned activity in the developing zebrafish spinal cord. Current Biology: CB, 22, 93–102.Google Scholar
  176. 176.
    Fletcher, M. L., Masurkar, A. V., Xing, J., et al. (2009). Optical imaging of postsynaptic odor representation in the glomerular layer of the mouse olfactory bulb. Journal of Neurophysiology, 102, 817–830.Google Scholar
  177. 177.
    Fletcher, M. L. (2011). Analytical processing of binary mixture information by olfactory bulb glomeruli. PLoS ONE, 6, e29360.Google Scholar
  178. 178.
    Harvey, C. D., Coen, P., & Tank, D. W. (2012). Choice-specific sequences in parietal cortex during a virtual-navigation decision task. Nature, 484, 62–68.ADSGoogle Scholar
  179. 179.
    Ahrens, M. B., Orger, M. B., Robson, D. N., et al. (2013). Whole-brain functional imaging at cellular resolution using light-sheet microscopy. Nature Methods, 10, 413–420.Google Scholar
  180. 180.
    Akerboom, J., Chen, T. W., Wardill, T. J., et al. (2012). Optimization of a GCaMP calcium indicator for neural activity imaging. The Journal of Neuroscience: The Official Journal of the Society for Neuroscience, 32, 13819–13840.Google Scholar
  181. 181.
    Andermann, M. L., Kerlin, A. M., & Reid, R. C. (2010). Chronic cellular imaging of mouse visual cortex during operant behavior and passive viewing. Frontiers in Cell Neuroscience, 4, 3.Google Scholar
  182. 182.
    Minderer, M., Liu, W., Sumanovski, L. T., et al. (2012). Chronic imaging of cortical sensory map dynamics using a genetically encoded calcium indicator. The Journal of Physiology, 590, 99–107.Google Scholar
  183. 183.
    Dombeck, D. A., Harvey, C. D., Tian, L., et al. (2010). Functional imaging of hippocampal place cells at cellular resolution during virtual navigation. Nature Neuroscience, 13, 1433–1440.Google Scholar
  184. 184.
    Huber, D., Gutnisky, D. A., Peron, S., et al. (2012). Multiple dynamic representations in the motor cortex during sensorimotor learning. Nature, 484, 473–478.ADSGoogle Scholar
  185. 185.
    Ataka, K., & Pieribone, V. A. (2002). A genetically targetable fluorescent probe of channel gating with rapid kinetics. Biophysical Journal, 82, 509–516.ADSGoogle Scholar
  186. 186.
    Sakai, R., Repunte-Canonigo, V., Raj, C. D., & Knöpfel, T. (2001). Design and characterization of a DNA-encoded, voltage-sensitive fluorescent protein. The European Journal of Neuroscience, 13, 2314–2318.Google Scholar
  187. 187.
    Guerrero, G., Siegel, M. S., Roska, B., et al. (2002). Tuning FlaSh: Redesign of the dynamics, voltage range, and color of the genetically encoded optical sensor of membrane potential. Biophysical Journal, 83, 3607–3618.ADSGoogle Scholar
  188. 188.
    Baker, B. J., Lee, H., Pieribone, V. A., et al. (2007). Three fluorescent protein voltage sensors exhibit low plasma membrane expression in mammalian cells. Journal of Neuroscience Methods, 161, 32–38.Google Scholar
  189. 189.
    Lundby, A., Mutoh, H., Dimitrov, D., et al. (2008). Engineering of a genetically encodable fluorescent voltage sensor exploiting fast Ci-VSP voltage-sensing movements. PLoS ONE, 3, e2514.Google Scholar
  190. 190.
    Jin, L., Baker, B., Mealer, R., et al. (2011). Random insertion of split-cans of the fluorescent protein venus into Shaker channels yields voltage sensitive probes with improved membrane localization in mammalian cells. Journal of Neuroscience Methods, 199, 1–9.Google Scholar
  191. 191.
    Barnett, L., Platisa, J., Popovic, M., et al. (2012). A fluorescent, genetically-encoded voltage probe capable of resolving action potentials. PLoS ONE, 7, e43454.Google Scholar
  192. 192.
    Jin, L., Han, Z., Platisa, J., et al. (2012). Single action potentials and subthreshold electrical events imaged in neurons with a fluorescent protein voltage probe. Neuron, 75, 779–785.Google Scholar
  193. 193.
    Han, Z., Jin, L., Platisa, J., et al. (2013). Fluorescent protein voltage probes derived from ArcLight that respond to membrane voltage changes with fast kinetics. PLoS ONE, 8, e81295.Google Scholar
  194. 194.
    St-Pierre, F., Marshall, J. D., Yang, Y., et al. (2014). High-fidelity optical reporting of neuronal electrical activity with an ultrafast fluorescent voltage sensor. Nature Neuroscience, 17, 884–889.Google Scholar
  195. 195.
    Chanda, B., Blunck, R., Faria, L. C., et al. (2005). A hybrid approach to measuring electrical activity in genetically specified neurons. Nature Neuroscience, 8, 1619–1626.Google Scholar
  196. 196.
    Looger, L. L., & Griesbeck, O. (2012). Genetically encoded neural activity indicators. Current Opinion in Neurobiology, 22, 18–23.Google Scholar
  197. 197.
    Kralj, J. M., Hochbaum, D. R., Douglass, A. D., & Cohen, A. E. (2011). Electrical spiking in Escherichia coli probed with a fluorescent voltage-indicating protein. Science, 333, 345–348.ADSGoogle Scholar
  198. 198.
    Maclaurin, D., Venkatachalam, V., Lee, H., & Cohen, A. E. (2013). Mechanism of voltage-sensitive fluorescence in a microbial rhodopsin. Proceedings of the National Academy of Sciences of the United States of America, 110, 5939–5944.ADSGoogle Scholar
  199. 199.
    Gong, Y., Li, J. Z., & Schnitzer, M. J. (2013). Enhanced archaerhodopsin fluorescent protein voltage indicators. PLoS ONE, 8, e66959.Google Scholar
  200. 200.
    Hochbaum, D. R., Zhao, Y., Farhi, S. L., et al. (2014). All-optical electrophysiology in mammalian neurons using engineered microbial rhodopsins. Nature Methods 11,825–833.Google Scholar
  201. 201.
    Zou, P., Zhao, Y., Douglass, A. D., et al. (2014). Bright and fast multi-colored voltage reporters via electrochromic FRET (eFRET). Nature Communications (In press).Google Scholar
  202. 202.
    Gong, Y., Wagner, M. J., Zhong Li, J., & Schnitzer, M. J. (2014). Imaging neural spiking in brain tissue using FRET-opsin protein voltage sensors. Nature Communications, 5 Article number: 3674.Google Scholar
  203. 203.
    Pastrana, E. (2011). Light-based electrophysiology. Nature Methods, 9, 38–38.Google Scholar
  204. 204.
    Cao, J., Arha, M., Sudrik, C., et al. (2013). Light-inducible activation of target mRNA translation in mammalian cells. Chemical Communications (Cambridge), 49, 8338–8340.Google Scholar
  205. 205.
    Lynch, M. A. (2004). Long-term potentiation and memory. Physiological Reviews, 84, 87–136.Google Scholar
  206. 206.
    Snyder, S. H., & Innis, R. B. (1979). Peptide neurotransmitters. Annual Review of Biochemistry, 48, 755–782.Google Scholar
  207. 207.
    Cotman, C. W., & Monaghan, D. T. (1986). Anatomical organization of excitatory amino acid receptors and their properties. Advances in Experimental Medicine and Biology, 203, 237–252.Google Scholar
  208. 208.
    Okumoto, S., Looger, L. L., Micheva, K. D., et al. (2005). Detection of glutamate release from neurons by genetically encoded surface-displayed FRET nanosensors. Proceedings of the National Academy of Sciences of the United States of America, 102, 8740–8745.ADSGoogle Scholar
  209. 209.
    Tsien, R. Y. (2005). Building and breeding molecules to spy on cells and tumors. FEBS Letters, 579, 927–932.Google Scholar
  210. 210.
    Marvin, J. S., Borghuis, B. G., Tian, L., et al. (2013). An optimized fluorescent probe for visualizing glutamate neurotransmission. Nature Methods, 10, 162–170.Google Scholar
  211. 211.
    Nguyen, Q.-T., Schroeder, L. F., Mank, M., et al. (2010). An in vivo biosensor for neurotransmitter release and in situ receptor activity. Nature Neuroscience, 13, 127–132.Google Scholar
  212. 212.
    Yamauchi, J. G., Nemecz, Nguyen, Q. T., et al. (2011). Characterizing ligand-gated ion channel receptors with genetically encoded Ca2+ sensors. PLoS ONE, 6, e16519.Google Scholar
  213. 213.
    Sudhof, T. C. (1995). The synaptic vesicle cycle: A cascade of protein–protein interactions. Nature, 375, 645–653.ADSGoogle Scholar
  214. 214.
    Ng, M., Roorda, R. D., Lima, S. Q., et al. (2002). Transmission of olfactory information between three populations of neurons in the antennal lobe of the fly. Neuron, 36, 463–474.Google Scholar
  215. 215.
    Li, Y., & Tsien, R. W. (2012). pHTomato, a red, genetically encoded indicator that enables multiplex interrogation of synaptic activity. Nature Neuroscience, 15, 1047–1053.Google Scholar
  216. 216.
    Berglund, K., Schleich, W., Krieger, P., et al. (2006). Imaging synaptic inhibition in transgenic mice expressing the chloride indicator, Clomeleon. Brain Cell Biology, 35, 207–228.Google Scholar
  217. 217.
    Grimley, J. S., Li, L., Wang, W., et al. (2013). Visualization of synaptic inhibition with an optogenetic sensor developed by cell-free protein engineering automation. The Journal of Neuroscience: The Official Journal of the Society for Neuroscience, 33, 16297–16309.Google Scholar
  218. 218.
    Marblestone, A. H., Zamft, B. M., Maguire, Y. G., et al. (2013). Physical principles for scalable neural recording. Frontiers in Computional Neuroscience, 7, 137.Google Scholar
  219. 219.
    Caravaca-Aguirre, A. M., Niv, E., Conkey, D. B., & Piestun, R. (2013). Real-time resilient focusing through a bending multimode fiber. Optics Express, 21, 12881–12887.Google Scholar
  220. 220.
    Zorzos, A. N., Boyden, E. S., & Fonstad, C. G. (2010). Multiwaveguide implantable probe for light delivery to sets of distributed brain targets. Optics Letters, 35, 4133–4135.ADSGoogle Scholar
  221. 221.
    Zorzos, A. N., Scholvin, J., Boyden, E. S., & Fonstad, C. G. (2012). Three-dimensional multiwaveguide probe array for light delivery to distributed brain circuits. Optics Letters, 37, 4841–4843.ADSGoogle Scholar
  222. 222.
    Conkey, D. B., Caravaca-Aguirre, A. M., & Piestun, R. (2012). High-speed scattering medium characterization with application to focusing light through turbid media. Optics Express, 20, 1733–1740.ADSGoogle Scholar
  223. 223.
    Keller, P. J., Schmidt, A. D., Wittbrodt, J., & Stelzer, E. H. (2008). Reconstruction of zebrafish early embryonic development by scanned light sheet microscopy. Science, 322, 1065–1069.ADSGoogle Scholar
  224. 224.
    Abrahamsson, S., Chen, J., Hajj, B., et al. (2013). Fast multicolor 3D imaging using aberration-corrected multifocus microscopy. Nature Methods, 10, 60–63.Google Scholar
  225. 225.
    Quirin, S., Peterka, D. S., & Yuste, R. (2013). Instantaneous three-dimensional sensing using spatial light modulator illumination with extended depth of field imaging. Optics Express, 21, 16007–16021.ADSGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.Department of ChemistryUniversity of AlbertaEdmontonCanada

Personalised recommendations