Advertisement

CT-/X-Ray-Guided Technique in Posterior Lumbar Spine Fusion

  • Luigi Manfrè
Chapter
Part of the New Procedures in Spinal Interventional Neuroradiology book series (NPSIN)

Abstract

Posterior lumbar fusion (PIF) is considered one of the choices to be considered when traumatic, degenerative, or neoplastic diseases occur, generating spine instability. During the last 5 years, because of dramatic improvement in CT-guided techniques using a percutaneous approach, as well as new materials adopted by industries, minimal invasive spine surgery (MISS) performing PIF procedures with soft tissues incision smaller than 10 mm only and fully CT-guided approach becomes a reality. The possibility to perform the procedure directly into the CT scan room, adopting the widespread C-arm + CT combination technique, increases optimal results significantly reducing general PIF drawbacks, as radiation exposure for the patient and physicians, incorrect screw position, time duration of the procedure, and possible complications. Recently, new percutaneous approaches have been proposed to perform direct posterior facet joint fixation (FF), using trans-facet screws (TFF), introduced through the articular facets, or intra-facet fusion (IFF), with intra-articular implants. Both systems have been proved to obtain biomechanical stability equivalent to conventional PIF on finite elements analysis and for this reason are more and more used in those patients with local microinstability responsible for chronic low back pain, unresponsive to the conventional facet joint radioablation.

Supplementary material

978-3-319-12901-3_4_MOESM1_ESM.mp4 (332.9 mb)
Video 4.1 (MP4 340893 kb)
978-3-319-12901-3_4_MOESM2_ESM.mp4 (398.6 mb)
Video 4.2 (MP4 408173 kb)

References

  1. 1.
    Schultz RS, Boger JW, Dunn HK (1985) Strength of stainless steel surgical wire in various fixation modes. Clin Orthop 198:304–307Google Scholar
  2. 2.
    Weiss M (1975) Dynamic spine alloplasty (spring-loading corrective devices) after fracture and spinal cord injury. Clin Orthop 112:150–158CrossRefGoogle Scholar
  3. 3.
    Boucher HH (1959) A method of spinal fusion. J Bone Joint Surg (Br) 41-B:248–259CrossRefGoogle Scholar
  4. 4.
    Grob D (2009) A prospective, cohort study comparing translaminar screw fixation with transforaminal lumbar interbody fusion and pedicle screw fixation for fusion of the degenerative lumbar spine. J Bone Joint Surg (Br) 91-B:1347–1353CrossRefGoogle Scholar
  5. 5.
    Okuda S et al (2014) Repeated adjacent-segment degeneration after posterior lumbar interbody fusion. J Neurosurg Spine 20(5):538–541CrossRefPubMedGoogle Scholar
  6. 6.
    Cho TK et al (2013) Preoperative predictable factors for the occurrence of adjacent segment degeneration requiring second operation after spinal fusion at isolated L4-L5 level. J Neurol Surg A Cent Eur Neurosurg 9:426–429Google Scholar
  7. 7.
    Wang YT et al (2014) Endoscopy-assisted posterior lumbar interbody fusion in a single segment. J Clin Neurosci 21(2):287–292CrossRefPubMedGoogle Scholar
  8. 8.
    Raley DA (2012) Retrospective computed tomography scan analysis of percutaneously inserted pedicle screws for posterior transpedicular stabilization of the thoracic and lumbar spine: accuracy and complication rates. Spine 37(12):1092–1100CrossRefPubMedGoogle Scholar
  9. 9.
    Goldstein CL et al (2014) Comparative outcomes of minimally invasive surgery for posterior lumbar fusion: a systematic review. Clin Orthop Relat Res 472(6):1727–1737CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Cappuccio M et al (2013) Complications in minimally invasive percutaneous fixation of thoracic and lumbar spine fractures. Orthopedics 36(6):729–734CrossRefGoogle Scholar
  11. 11.
    Al-Khouja LT et al (2014) Cost-effectiveness analysis in minimally invasive spine surgery. Neurosurg Focus 36(6):E4CrossRefPubMedGoogle Scholar
  12. 12.
    Manfre’ L (2011) CT-guided posterior lumbar interbody fusion and distraction. A case report. Neuroradiol J 24(6):919–923CrossRefGoogle Scholar
  13. 13.
    Richter PH, Dehner C, Scheiderer B, Gebhard F, Kraus M (2013) Emission of radiation in the orthopaedic operation room: a comprehensive review. OA Musculoskeletal Med 1(2):11CrossRefGoogle Scholar
  14. 14.
    Kraus MD et al (2010) Can computer-assisted surgery reduce the effective dose for spinal fusion and sacroiliac screw insertion? Clin Orthop Relat Res 468(9):2419–2429CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Rodriguez A et al (2014) Novel placement of cortical bone trajectory screws in previously instrumented pedicles for adjacent-segment lumbar disease using CT image-guided navigation. Neurosurg Focus 36(3):E9CrossRefPubMedGoogle Scholar
  16. 16.
    Dong-Ho L et al (2011) Optimal entry points and trajectories for cervical pedicle screw placement into subaxial cervical vertebrae. Eur Spine J 20(6):905–911CrossRefGoogle Scholar
  17. 17.
    Pfeiffer FM, Abernathie DL, Smith DE (2006) A comparison of pullout strength for pedicle screws of different designs: a study using tapped and untapped pilot holes. Spine 31:867–870CrossRefGoogle Scholar
  18. 18.
    Barber JW, Boden SD, Ganey T, Hutton WC (1988) Biomechanical study of lumbar pedicle screws: does convergence affect axial pullout strength? J Spinal Disord 11:215–220Google Scholar
  19. 19.
    Sterba W, Kim DG, Fyhrie DP, Yeni YN, Vaidya R (2007) Biomechanical analysis of differing pedicle screw insertion angles. Clin Biomech 22:385–391CrossRefGoogle Scholar
  20. 20.
    Santoni BG, Hynes RA, McGilvray KC et al (2009) Cortical bone trajectory for lumbar pedicle screws. Spine J 9:366–373CrossRefPubMedGoogle Scholar
  21. 21.
    Erkan S, Wu C, Mehbod AA, Cho W, Transfeldt EE (2010) Biomechanical comparison of transpedicular versus extrapedicular vertebroplasty using polymethylmethacrylate. J Spinal Disord Tech 23:180–185CrossRefPubMedGoogle Scholar
  22. 22.
    Esses SI, Sachs BL, Dreyzin V (1993) Complications associated with the technique of pedicle screw fixation: a selected survey of ABS members. Spine 18:2231–2238CrossRefPubMedGoogle Scholar
  23. 23.
    Gertzbein SD, Robbins SE (1990) Accuracy of pedicular screw placement in vivo. Spine 15:11–14CrossRefPubMedGoogle Scholar
  24. 24.
    Lonstein JE, Denis F, Perra JH et al (1999) Complications associated with pedicle screws. J Bone Joint Surg Am 81:1519–1528CrossRefPubMedGoogle Scholar
  25. 25.
    Okuyama K, Abe E, Suzuki T et al (1999) Posterior lumbar interbody fusion: a retrospective study of complications after facet joint excision and pedicle screw fixation in 148 cases. Acta Orthop Scand 70:329–334CrossRefPubMedGoogle Scholar
  26. 26.
    Weinstein JN, Spratt KF, Spengler D et al (1998) Spinal pedicle fixation: reliability and validity of roentgenogram-based assessment and surgical factors on successful screw placement. Spine 13:1012CrossRefGoogle Scholar
  27. 27.
    Whitecloud TS, Butler JC, Cohen JL et al (1989) Complications with the variable spinal plating system. Spine 14:472–476CrossRefPubMedGoogle Scholar
  28. 28.
    Ergur I et al (2007) Neurovascular risks of sacral screws with bicortical purchase: an anatomical study. Eur Spine J 16(9):1519–1523CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Panchal SJ et al (2013) Facet injections and radiofrequency denervation. In: Deer TR (ed) Comprehensive treatment of chronic pain by medical, interventional, and integrative approaches, vol 1. Springer, New York, pp 371–380CrossRefGoogle Scholar
  30. 30.
    Boswell MV et al (2007) A systematic review of therapeutic facet. Joint interventions in chronic spinal pain. Pain Physician 10:229–253PubMedGoogle Scholar
  31. 31.
    Shealy CN (1975) Percutaneous radiofrequency denervation of the lumbar facets. J Neurosurg 43:448–451CrossRefPubMedGoogle Scholar
  32. 32.
    Kroll HR et al (2008) A randomized, double-blind, prospective study comparing the efficacy of continuous versus pulsed radiofrequency in the treatment of lumbar facet syndrome? J Clin Anesth 20(7):534–537CrossRefPubMedGoogle Scholar
  33. 33.
    Yahiro MA (1994) Comprehensive literature review: pedicle screw fixation devices. Spine 19(20 Suppl):2274S–2278SCrossRefPubMedGoogle Scholar
  34. 34.
    Benzel EC (2001) Biomechanics of spine stabilization, vol 1. American Association of Neurological Surgeons, Rolling Meadows, pp 1–19Google Scholar
  35. 35.
    Cheng BC, Moore DK, Zdeblick TA et al (1997) Load-sharing characteristics of two anterior cervical plate systems. The Cervical Spine Research Society Meeting, Rancho MirageGoogle Scholar
  36. 36.
    Molina C, Kretzer RM, Hu N, Umekoji H (2014) Comparative in vitro biomechanical analysis of novel posterior cervical fixation technique versus conventional posterior-based construct. J Spinal Disord Tech 27(1):40–47CrossRefPubMedGoogle Scholar
  37. 37.
    Yu X et al (2014) Lumbar spine stability after combined application of interspinous fastener and modified posterior lumbar interbody fusion: a biomechanical study. Arch Orthop Trauma Surg 134(5):623–629CrossRefPubMedGoogle Scholar
  38. 38.
    Ferrara LA M.S., Secor JL B.S., Jin B-H (2003) A biomechanical comparison of facet screw fixation and pedicle screw fixation effects of short-term and long-term repetitive cycling. Spine 28(12):1226–1234PubMedGoogle Scholar
  39. 39.
    Su SB et al (2009) An anatomic and radiographic study of lumbar facets relevant to percutaneous transfacet fixation. Spine 34:E384–E390CrossRefPubMedGoogle Scholar
  40. 40.
    Rao P et al (2014) The “TFP” fusion technique for posterior 360° lumbar fusion: a combination of open decompression, transforaminal lumbar interbody fusion, and facet fusion with percutaneous pedicle screw fixation. Orthop Surg 6(1):54–59CrossRefPubMedGoogle Scholar
  41. 41.
    Voyadzis JM, Anaizi AN (2013) Minimally invasive lumbar transfacet screw fixation in the lateral decubitus position after extreme lateral interbody fusion: a technique and feasibility study. J Spinal Disord Tech 26(2):98–106CrossRefPubMedGoogle Scholar
  42. 42.
    Mahar A, Kim C, Oka R (2006) Biomechanical comparison of a novel percutaneous transfacet device and a traditional posterior system for single level fusion. J Spinal Disord Tech 19(8):591–594CrossRefPubMedGoogle Scholar
  43. 43.
    Milchteim C, Yu WD, Ho A (2012) Anatomical parameters of subaxial percutaneous transfacet screw fixation based on the analysis of 50 computed tomography scans: clinical article. J Neurosurg Spine 16(6):573–578CrossRefPubMedGoogle Scholar
  44. 44.
    Horn EM, Theodore N, Crawford NR (2008) Transfacet screw placement for posterior fixation of C-7. J Neurosurg Spine 9(2):200–206CrossRefPubMedGoogle Scholar
  45. 45.
    Muthukumar N (2013) Transfacet screw fixation of the subaxial cervical spine–how I do it? Acta Neurochir 155(7):1235–1239CrossRefPubMedGoogle Scholar
  46. 46.
    Amoretti N, Amoretti ME, Hovorka I (2013) Percutaneous facet screw fixation of lumbar spine with CT and fluoroscopic guidance: a feasibility study. Radiology 268(2):548–555CrossRefPubMedGoogle Scholar
  47. 47.
    Manfre’ L (2014) CT-Guided transfacet pedicle screw fixation in facet joint syndrome: a novel approach. Inter Neuroradiology 20:614–620Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.Department of Minimal Invasive Spine Therapy“Cannizzaro” HospitalCataniaItaly

Personalised recommendations