Experimental Confirmation of Cylindrical Electromagnetic Sensor Design for Liquid Detection Application

  • K. Tashiro
  • H. Wakiwaka
  • T. Mori
  • R. Nakano
  • N. H. Harun
  • N. Misron

Abstract

Design of cylindrical electromagnetic sensor is discussed. The purpose of this sensor is to detect a change in the conductivity or permittivity of the liquid. If the evaluation frequency is less than 100 kHz, skin effects would be negligible. The proposed sensor consists of two cylindrical sensors, a solenoid coil and a cylindrical capacitor. For an ideal shape condition, estimation methods for inductance and capacitance have been already proposed. However, the practical issues need to be clarified. It starts with fabrication of several coils and capacitors, to confirm the validity of the estimation methods. From experimental results, it was found that, the estimation error and existence of the parasitic element could not be neglected. Liquid detection demonstrations with fabricated sensors are also demonstrated.

Keywords

Liquid detection sensor Electromagnetic field Low-frequency Cylindrical capacitor Solenoid coil 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Abe, T., Shinozawa, Y., Machida, T., Yamada, K.: Device for judging types of liquid in container and control method therefor, US Patent, US7466236B2 (2008)Google Scholar
  2. 2.
    Misron, N., Harun, N.H., Lee, Y.K., Sidek, R.M., Aris, I., Wakiwaka, H., Tashiro, K.: Improvement in sensitivity of an Inductive oil palm fruit sensor. Sensors 14, 2431–2448 (2014)CrossRefGoogle Scholar
  3. 3.
    MartineZ, S., Munoz-Pascual, F.-X., Baldrich, E.: detection of sample conductivity and bacterial presence using inductive microcoils. Effect of device size and geometry. Sensors and Actuators B: Chemical 181, 816–822 (2013)CrossRefGoogle Scholar
  4. 4.
    Zia, M.I., Rahman, M.S.A., Mukhopadhyay, S.C., Yu, P., Al-Bahadly, I.H., Goicoechea, J., Gooneratne, C.P., Kosel, J., Liao, T.: Technique for rapid detection of phthalates in water and beverages. Journal of Food Engineering 116, 515–523 (2013)CrossRefGoogle Scholar
  5. 5.
    Korostynska, O., Mason, A., Al-Shamma’a, A.I.: Proof-of-concept microwave sensor on flexible substrate for real-time water composition analysis. In: 2012 Sixth International Conference on Sensing Technology (ICST 2012), pp. 547–550 (2012)Google Scholar
  6. 6.
    Yunus, M.A.M., Mukhopadhyay, S.C.: Development of planar electromagnetic sensors for measurement and monitoring of environmental parameters. Meas. Sci. Technol. 22, 025107(9p.) (2011)Google Scholar
  7. 7.
    Yunus, M.A.M., Mukhopadhyay, S.C.: Novel planar electromagnetic sensors for detection of nitrates and contamination in natural water sources. IEEE Sensors Journal 11, 1440–1447 (2011)CrossRefGoogle Scholar
  8. 8.
    Yunus, M.A.M., Mukhopadhyay, S.C.: A low-cost sensing system for quality monitoring of dairy products. IEEE Transactions on Instrumentatuin and Measurement 55, 1331–1338 (2006)CrossRefGoogle Scholar
  9. 9.
    Wylie, S.R., Shaw, A., Al-Shamma’a, A.I.: RF sensor for multiphase flowmeasurement through an oil pipeline. Measurement Science & Technology 17(8), 2141–2149 (2006)CrossRefGoogle Scholar
  10. 10.
    Rahman, M.S.A., Mukhopadhyay, S.C., Yu, P., Goicoechea, J., Matias, I.R., Gooneratne, C.P., Kosel, J.: Detection of bacterial endotoxin in food: New planar interdigital sensors based approach. Journal of Food Engineering 116, 515–523 (2013)CrossRefGoogle Scholar
  11. 11.
    National Astronomical Observatory of Japan. Chronological science tables. Maruzen Publishing Co. Ltd. (2005) (in Japanese)Google Scholar
  12. 12.
    Hastings, H.: Approximations for digital computers (Sheet No. 46 and 49), Princeton (1955) (This information referred to a Japanese book: Moriguchi, S., Udagawa, K., Hitomatsu, S.: IWANAMI SUUGAKU KOUSHIKI, 22nd edn., vol. III, pp. 79–81. Iwanami Publishing (2010)Google Scholar
  13. 13.
    Nagaoka, H.: The inductance coefficients of solenoids. Journal of the College of Science XXVII, Article 6 (1909), http://repository.dl.itc.u-tokyo.ac.jp/dspace/bitstream/2261/32855/1/jcs027006.pdf
  14. 14.
    Omoto, Y., Morita, K.: On the electrode capacity of magnetron tube. Journal of IEEJ 60(619), 61–62 (1940), http://dx.doi.org/10.11526/ieejjournal1888.60.61 (in Japanese)
  15. 15.
    Kogo, H.: Electrode Capacity of Split-Coaxial Cylinder. Research Reports of Faculty of Technology 6(10), 54–67 (1955) (in Japanese)Google Scholar
  16. 16.
    Oka, S.: Theory of dielectric, pp. 191–195. Gendaikougakusha Co. Ltd. (1977) (in Japanese)Google Scholar
  17. 17.
    Ichijo, B., Arai, T.: A new method of measuring dielectric property of very high loss material at high frequency. IEEE Trans. Instrum. Means. IM-19, 73–77 (1970)CrossRefGoogle Scholar
  18. 18.
    Lattey, R.T.: Dielectric constants of electrolytic solutions. Philosophical Magazine and Journal of science 41(246), 829–848 (1921)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • K. Tashiro
    • 1
  • H. Wakiwaka
    • 1
  • T. Mori
    • 1
  • R. Nakano
    • 1
  • N. H. Harun
    • 2
  • N. Misron
    • 2
  1. 1.Spin Device Technology Center (SDTC)Shinshu UniversityNaganoJapan
  2. 2.Faculty of EngineeringUniversity Putra MalaysiaKuala LumpurMalaysia

Personalised recommendations