Skip to main content

Time Integration in the Discontinuous Galerkin Code MIGALE - Unsteady Problems

  • Chapter
IDIHOM: Industrialization of High-Order Methods - A Top-Down Approach

Abstract

This chapter presents recent developments of a high-order Discontinuous Galerkin (DG) method to deal with unsteady simulation of turbulent flows by using high-order implicit time integration schemes. The approaches considered during the IDIHOM project were the Implicit Large Eddy Simulation (ILES), where no explicit subgrid-scale (SGS) model is included and the DG discretization itself acts like a SGS model, and two hybrid approaches between Reynolds-averaged Navier- Stokes (RANS) and Large Eddy Simulation (LES) models, namely the Spalart-Allmaras Detached Eddy Simulation (SA-DES) and the eXtra- Large Eddy Simulation (X-LES). Accurate time integration is based on high-order linearly implicit Rosenbrock-type Runge-Kutta schemes, implemented in the DG code MIGALE up to sixth-order accuracy. Several high-order DG results of both incompressible and compressible 3D turbulent test cases proposed within the IDIHOM project demonstrate the capability of the method.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Airbus D&S (CA). Test case report on U.1a. IDIHOM internal report (2013)

    Google Scholar 

  2. Arnold, D.N., Brezzi, F., Cockburn, B., Marini, L.D.: Unified analysis of discontinuous Galerkin methods for elliptic problems. SIAM J. Numer. Anal. 39(5), 1749–1779 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  3. ATAAC. ATAAC Web page (2014), http://cfd.mace.manchester.ac.uk/twiki/bin/view/ATAAC/WebHome

  4. Aupoix, B., Barricau, P., Egorov, Y., Geiler, C., Gilliot, A., Menter, F.R., Monnier, J.-C., Pailhas, G., Perret, L., Stanislas, M., Touvet, Y.: The DESider bump experiment. In: In. Proc. 7th Int. ERCOFTAC Symp. Eng. Turb., Turkey, June 4–6 (2008)

    Google Scholar 

  5. Balay, S., Adams, M.F., Brown, J., Brune, P., Buschelman, K., Eijkhout, V., Gropp, W.D., Kaushik, D., Knepley, M.G., McInnes, L.C.: PETSc Web page (2014), http://www.mcs.anl.gov/petsc

  6. Bassi, F., Botti, L., Colombo, A., Di Pietro, D.A., Tesini, P.: On the flexibility of agglomeration based physical space discontinuous Galerkin discretizations. J. Comput. Phys. 231(1), 45–65 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  7. Bassi, F., Botti, L., Colombo, A., Ghidoni, A., Rebay, S.: Discontinuous Galerkin for turbulent flows. In: Wang, Z.J. (ed.) Adaptive High-Order Methods in Computational Fluid Dynamics, ch. 3. Advances in Computational Fluid Dynamics, vol. 2, pp. 1–32. World Science Books (2011)

    Google Scholar 

  8. Bassi, F., Crivellini, A., Di Pietro, D.A., Rebay, S.: An artificial compressibility flux for the discontinuous Galerkin solution of the incompressible Navier-Stokes equations. J. Comput. Phys. 218, 794–815 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  9. Bassi, F., Crivellini, A., Di Pietro, D.A., Rebay, S.: An implicit high-order discontinuous Galerkin method for steady and unsteady incompressible flows. Comput. Fluids 36, 1529–1546 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  10. Bassi, F., Crivellini, A., Rebay, S., Savini, M.: Discontinuous Galerkin solution of the Reynolds-averaged Navier-Stokes and k-ω turbulence model equations. Comput. Fluids 34, 507–540 (2005)

    Article  MATH  Google Scholar 

  11. Bassi, F., De Bartolo, C., Hartmann, R., Nigro, A.: A discontinuous Galerkin method for inviscid low Mach number flows. J. Comput. Phys. 228(11), 3996–4011 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  12. Bassi, F., Rebay, S.: A high-order accurate discontinuous finite element method for the numerical solution of the compressible Navier–Stokes equations. J. Comput. Phys. 131, 267–279 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  13. Bassi, F., Rebay, S.: A high order discontinuous Galerkin method for compressible turbulent flows. In: Cockburn, B., Karniadakis, G.E., Shu, C.-W. (eds.) Discontinuous Galerkin Methods. LNCSE, vol. 11, pp. 77–88. Springer, Heidelberg (2000)

    Google Scholar 

  14. Bassi, F., Rebay, S., Mariotti, G., Pedinotti, S., Savini, M.: A high-order accurate discontinuous finite element method for inviscid and viscous turbomachinery flows. In: Decuypere, R., Dibelius, G. (eds.) Proceedings of the 2nd European Conference on Turbomachinery Fluid Dynamics and Thermodynamics, March 5–7, pp. 99–108. Technologisch Instituut, Antwerpen (1997)

    Google Scholar 

  15. Botti, L.: Influence of reference-to-physical frame mappings on approximation properties of discontinuous piecewise polynomial spaces. J. Sci. Comput, 1–29 (2011)

    Google Scholar 

  16. Brezzi, F., Manzini, G., Marini, D., Pietra, P., Russo, A.: Discontinuous Galerkin approximations for elliptic problems. Numer. Meth. Part. D. E. 16, 365–378 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  17. Choi, Y.-H., Merkle, C.L.: The application of preconditioning in viscous flows. J. Comput. Phys. 105(2), 207–223 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  18. Chu, J., Luckring, J.M.: Experimental surface pressure data obtained on 65° delta wing across Reynolds number and Mach number ranges. TM 4645, NASA (1996)

    Google Scholar 

  19. Crivellini, A., Bassi, F.: An implicit matrix-free discontinuous Galerkin solver for viscous and turbulent aerodynamic simulations. Comput. Fluids 50(1), 81–93 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  20. Crivellini, A., D’Alessandro, V., Bassi, F.: A Spalart-Allmaras turbulence model implementation in a discontinuous Galerkin solver for incompressible flows. J. Comput. Phys. 241, 388–415 (2013)

    Article  Google Scholar 

  21. DESider. DESider Web page (2014), http://cfd.mace.manchester.ac.uk/desider/

  22. Di Marzo, G.: RODAS5(4) - Méthodes de Rosenbrock d’ordre 5(4) adaptées aux problemes différentiels-algébriques. MSc Mathematics Thesis; Faculty of Science, University of Geneva, Switzerland (1993)

    Google Scholar 

  23. Di Pietro, D.A., Ern, A.: Mathematical Aspects of Discontinuous Galerkin Methods. Mathématiques et Applications 69 (2012)

    Google Scholar 

  24. Dolejší, V.: Semi-implicit interior penalty discontinuous Galerkin methods for viscous compressible flows. Commun. Comput. Phys. 4, 231–274 (2008)

    MathSciNet  Google Scholar 

  25. Furman, A., Breitsamter, C.H.: Investigations of flow phenomena on generic delta wing. In: 25th Congress of the International Council of the Aeronautical Sciences, ICAS 2006-3.1.2, Hamburg, Germany, September 3–8 (2006)

    Google Scholar 

  26. Furman, A., Breitsamter, C.H.: Stereo-PIV and hot-wire investigations on delta wing with sharp and rounded leading edge. In: 1st CEAS European Air and Space Conference, CEAS-2007-430, Berlin, Germany, September 10–13 (2007)

    Google Scholar 

  27. Furman, A., Breitsamter, C.H.: Experimental investigations on the VFE-2 configuration at TU Munich, Germany. In: Understanding and Modeling Vortical Flows to Improve the Technology Readiness Level for Military Aircraft, Technical Report RTO-TR-AVT-113, chapter 21. NATO RTO, Neuilly-sur-Seine Cedex, France (October 2009)

    Google Scholar 

  28. Furman, A., Breitsamter, C.H.: Turbulent and unsteady flow characteristics of delta wing vortex systems. Aerosp. Sci. Technol. 24(1), 32–44 (2013)

    Article  Google Scholar 

  29. Garmann, D.J., Visbal, M.R.: C3.3: Implicit large eddy-simulations of transitional flow over the SD7003 airfoil using compact finite-differencing and filtering. In: 2nd International Workshop on High-Order CFD Methods, Cologne, Germany, May 27–28 (2013)

    Google Scholar 

  30. Gassner, G.J., Lörcher, F., Munz, C.-D.: A discontinuous Galerkin scheme based on a space-time expansion II. Viscous flow equations in multi dimensions. J. Sci. Comput. 34, 260–286 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  31. Ghidoni, A., Nigro, A., Rebay, S.: D3.2-09 – First results on performance of p-multigrid approach. IDIHOM internal report (2012)

    Google Scholar 

  32. Gottlieb, J.J., Groth, C.P.T.: Assessment of Riemann solvers for unsteady one-dimensional inviscid flows of perfect gases. J. Comput. Phys. 78, 437–458 (1988)

    Article  MATH  Google Scholar 

  33. Haase, W., Braza, M., Revell, A.: I The DESider Project. NNFM, vol. 103. Springer, Heidelberg (2009)

    Google Scholar 

  34. Hairer, E., Wanner, G.: Solving Ordinary Differential Equations II, Stiff and Differential-Algebraic Problems, 2nd edn. Springer Series in Computational Mathematics (1996)

    Google Scholar 

  35. Hänel, D., Schwane, R., Seider, G.: On the accuracy of upwind schemes for the solution of the Navier–Stokes equations. AIAA Paper 87-1105 (1987)

    Google Scholar 

  36. Hauke, G., Hughes, T.J.R.: A unified approach to compressible and incompressible flows. Comput. Methods Appl. Mech. Engrg. 113(3–4), 389–395 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  37. Hauke, G., Hughes, T.J.R.: A comparative study of different sets of variables for solving compressible and incompressible flows. Comput. Methods Appl. Mech. Engrg. 153(1–2), 1–44 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  38. Hu, C., Shu, C.-W.: Weighted essentially non-oscillatory schemes on triangular meshes. J. Comput. Phys. 150(1), 97–127 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  39. Iannelli, G.S., Baker, A.J.: A stiffly-stable implicit Runge-Kutta algorithm for CFD applications. AIAA Paper 88-0416 (1988)

    Google Scholar 

  40. IDIHOM. Industrialisation of High-Order Methods – A top-down approach, Specific Targeted Research Project supported by European Commission, http://www.dlr.de/as/en/desktopdefault.aspx/tabid-7027/11654_read-27492/

  41. Kok, J.C.: Resolving the dependence on freestream values for the k-ω turbulence model. AIAA J. 38(7), 1292–1295 (2000)

    Article  MathSciNet  Google Scholar 

  42. Kok, J.C., Dol, H.S., Oskam, B., van der Ven, H.: Extra-large eddy simulation of massively separated flows. AIAA Paper 2004-264 (2004)

    Google Scholar 

  43. Kok, J.C., van der Ven, H.: Capturing free shear layers in hybrid RANS-LES simulations of separated flow. In: Third Symposium Simulation of Wing and Nacelle Stall, Braunschweig, Germany, June 21–22 (2012)

    Google Scholar 

  44. Kok, J.C., van der Ven, H.: Test case summary report - A.11a DESider test case: Bump in a square duct. IDIHOM internal report (2014)

    Google Scholar 

  45. Lang, J., Verwer, J.: ROS3P—An accurate third-order Rosenbrock solver designed for parabolic problems. BIT 41(4), 731–738 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  46. Menter, F.R.: Two-equation eddy-viscosity turbulence model for engineering applications. AIAA J. 32(8), 1598–1605 (1994)

    Article  Google Scholar 

  47. Nationaal Lucht- en Ruimtevaartlaboratorium (NLR). Test case report on U.1a. IDIHOM internal report (2013)

    Google Scholar 

  48. Nigro, A., De Bartolo, C., Bassi, F., Ghidoni, A.: Up to sixth-order accurate A-stable implicit schemes applied to the discontinuous Galerkin discretized Navier-Stokes equations. J. Comput. Phys. Under Review (2014)

    Google Scholar 

  49. Nigro, A., Ghidoni, A., Rebay, S., Bassi, F.: Modified Extended BDF scheme for the discontinuous Galerkin solution of unsteady compressible flows. Int. J. Numer. Methods Fluids Under Review (2014)

    Google Scholar 

  50. Oliver, T.A.: A High-Order, Adaptive, Discontinuous Galerkin Finite Element Method for the Reynolds-Averaged Navier-Stokes Equations. PhD thesis, MIT, Cambridge, MA, USA (2008)

    Google Scholar 

  51. Oliver, T.A., Darmofal, D.L.: Impact of turbulence model irregularity on high-order discretizations. AIAA Paper 2009-953 (2009)

    Google Scholar 

  52. Spalart, P., Jou, W., Strelets, M., Allmaras, S.: Comments on the feasibility of LES for wings, and on a hybrid RANS/LES approach. In: International Conference on DNS/LES, Ruston, Louisiana, August 4-8 (1997)

    Google Scholar 

  53. Spalart, P.R., Allmaras, S.R.: A one-equation turbulent model for aerodynamic flows. AIAA Paper 92-0439 (1992)

    Google Scholar 

  54. Steinebach, G.: Order-reduction of ROW-methods for DAEs and method of lines applications. Preprint-Nr. 1741, FB Mathematik, TH Darmstadt (1995)

    Google Scholar 

  55. Tesini, P.: An h-Multigrid Approach for High-Order Discontinuous Galerkin Methods. PhD thesis, University of Bergamo, Bergamo, Italy (January 2008)

    Google Scholar 

  56. Wang, Z.J., Fidkowski, K., Abgrall, R., Bassi, F., Caraeni, D., Cary, A., Deconinck, H., Hartmann, R., Hillewaert, K., Huynh, H.T., Kroll, N., May, G., Persson, P.-O., van Leer, B., Visbal, M.: High-order CFD methods: Current status and perspective. Int. J. Numer. Methods Fluids 72(8), 811–845 (2013)

    Article  Google Scholar 

  57. Weiss, J.M., Smith, W.A.: Preconditioning applied to variable and constant density flows. AIAA J. 33(11), 2050–2057 (1995)

    Article  MATH  Google Scholar 

  58. Wilcox, D.C.: Turbulence Modelling for CFD. DCW industries Inc., La Cañada (1993)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Bassi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Bassi, F. et al. (2015). Time Integration in the Discontinuous Galerkin Code MIGALE - Unsteady Problems. In: Kroll, N., Hirsch, C., Bassi, F., Johnston, C., Hillewaert, K. (eds) IDIHOM: Industrialization of High-Order Methods - A Top-Down Approach. Notes on Numerical Fluid Mechanics and Multidisciplinary Design, vol 128. Springer, Cham. https://doi.org/10.1007/978-3-319-12886-3_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-12886-3_11

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-12885-6

  • Online ISBN: 978-3-319-12886-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics