Bioinspired Hierarchical Composites



The structural design of composite materials at multiple length scales is a widespread strategy found in biological materials to optimize opposing properties or to combine multiple functional properties in a unique material system. The combination of this hierarchical structuring approach with the vast chemical repertoire available in synthetic systems is expected to lead to man-made composites with unprecedented functionalities. Alternatively, hierarchical materials can potentially achieve sufficient strength and toughness even if made out of weaker environmentally-friendly or bioresorbable building blocks. Replicating the hierarchical design principle of biological systems in synthetic materials is an exciting challenge that has been tackled by researchers across different scientific communities. In this chapter, we present state-of-the-art examples on attempts to identify fundamental design principles of hierarchical natural materials and to then mimic these bioinspired concepts in man-made materials. Three selected structural features that can be independently designed at multiple length scales in biological materials are described as examples: (i) mechanical reinforcement, (ii) porosity, and (iii) topography. By comparing biological and man-made materials exhibiting these hierarchical features, we provide an overview on the limitations of currently exploited top-down and bottom-up manufacturing technologies and on the opportunities for the future development of hierarchical composites inspired by the unique multiscale structure of biological materials.


Synthetic Material Marine Sponge Small Length Scale Apparent Contact Angle Synthetic System 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Arzt E, Gorb S, Spolenak R (2003) From micro to nano contacts in biological attachment devices. Proc Natl Acad Sci U S A 100(19):10603–10606. doi:10.1073/pnas.1534701100CrossRefGoogle Scholar
  2. Autumn K, Hansen W (2006) Ultrahydrophobicity indicates a non-adhesive default state in gecko setae. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 192(11):1205–1212. doi:10.1007/s00359-006-0149-yCrossRefGoogle Scholar
  3. Autumn K, Liang YA, Hsieh ST, Zesch W, Chan WP, Kenny TW, Fearing R, Full RJ (2000) Adhesive force of a single gecko foot-hair. Nature 405(6787):681–685CrossRefGoogle Scholar
  4. Autumn K, Sitti M, Liang YA, Peattie AM, Hansen WR, Sponberg S, Kenny TW, Fearing R, ­Israelachvili JN, Full RJ (2002) Evidence for van der Waals adhesion in gecko setae. Proc Natl Acad Sci U S A 99(19):12252–12256. doi:10.1073/pnas.192252799CrossRefGoogle Scholar
  5. Autumn K, Dittmore A, Santos D, Spenko M, Cutkosky M (2006) Frictional adhesion: a new angle on gecko attachment. J Exp Biol 209(18):3569–3579. doi:10.1242/jeb.02486CrossRefGoogle Scholar
  6. Barthlott W, Neinhuis C (1997) Purity of the sacred lotus, or escape from contamination in biological surfaces. Planta 202(1):1–8CrossRefGoogle Scholar
  7. Barthelat F, Espinosa H (2007) An experimental investigation of deformation and fracture of Nacre–Mother of Pearl. Exp Mech 47(3):311–324. doi:10.1007/s11340-007-9040-1CrossRefGoogle Scholar
  8. Barthelat F, Li CM, Comi C, Espinosa HD (2006) Mechanical properties of nacre constituents and their impact on mechanical performance. J Mater Res 21(8):1977–1986. doi:10.1557/jmr.2006.0239CrossRefGoogle Scholar
  9. Barthelat F, Tang H, Zavattieri PD, Li CM, Espinosa HD (2007) On the mechanics of mother-of-pearl: a key feature in the material hierarchical structure. J Mech Phys Solids 55(2):306–337. doi:10.1016/j.jmps.2006.07.007CrossRefGoogle Scholar
  10. Bers AV, Wahl M (2004) The influence of natural surface microtopographies on fouling. Biofouling 20(1):43–51. doi:10.1080/08927010410001655533CrossRefGoogle Scholar
  11. Billiet T, Vandenhaute M, Schelfhout J, Vlierberghe VS, Dubruel P (2012) A review of trends and limitations in hydrogel-rapid prototyping for tissue engineering. Biomaterials 33(26):6020–6041CrossRefGoogle Scholar
  12. Bonderer LJ, Studart AR, Gauckler LJ (2008) Bioinspired design and assembly of platelet reinforced polymer films. Science 319(5866):1069–1073. doi:10.1126/science.1148726CrossRefGoogle Scholar
  13. Bonderer LJ, Feldman K, Gauckler LJ (2010) Platelet-reinforced polymer matrix composites by combined gel-casting and hot-pressing. Part II: thermoplastic polyurethane matrix composites. Compos Sci Technol 70(13):1966–1972. doi:10.1016/j.compscitech.2010.07.016CrossRefGoogle Scholar
  14. Bouville F, Maire E, Meille S, de Moortele VB, Stevenson AJ, Deville S (2014) Strong, tough and stiff bioinspired ceramics from brittle constituents. Nat Mater 13(5):508–514. doi:10.1038/nmat3915CrossRefGoogle Scholar
  15. Buehler MJ (2010) Computational and theoretical materiomics: properties of biological and de novo bioinspired materials. J Comput Theor Nanosci 7(7):1203–1209. doi:10.1166/jctn.2010.1474CrossRefGoogle Scholar
  16. Callow JA, Callow ME (2011) Trends in the development of environmentally friendly fouling-resistant marine coatings. Nat Commun 2:244CrossRefGoogle Scholar
  17. Cazetta E, Schaefer H, Galetti M (2009) Why are fruits colorful? The relative importance of achromatic and chromatic contrasts for detection by birds. Evol Ecol 23(2):233–244. doi:10.1007/s10682-007-9217–1CrossRefGoogle Scholar
  18. Cesarano J, Dellinger JG, Saavedra MP, Gill DD, Jamison RD, Grosser BA, Sinn-Hanlon JM, Goldwasser MS (2005) Customization of load-bearing hydroxyapatite lattice scaffolds. Int J Appl Ceram Technol 2(3):212–220. doi:10.1111/j.1744-7402.2005.02026.xCrossRefGoogle Scholar
  19. Chen HY, Di JC, Wang N, Dong H, Wu J, Zhao Y, Yu JH, Jiang L (2011) Fabrication of hierarchically porous inorganic nanofibers by a general microemulsion electrospinning approach. Small 7(13):1779–1783. doi:10.1002/smll.201002376CrossRefGoogle Scholar
  20. Cortese B, D’Amone S, Manca M, Viola I, Cingolani R, Gigli G (2008) Superhydrophobicity due to the hierarchical scale roughness of PDMS surfaces. Langmuir 24(6):2712–2718. doi:10.1021/la702764xCrossRefGoogle Scholar
  21. Efimenko K, Rackaitis M, Manias E, Vaziri A, Mahadevan L, Genzer J (2005) Nested self-similar wrinkling patterns in skins. Nat Mater 4(4):293–297CrossRefGoogle Scholar
  22. Efimenko K, Finlay J, Callow ME, Callow JA, Genzer J (2009) Development and testing of hierarchically wrinkled coatings for marine antifouling. ACS Appl Mater Interfaces 1(5):1031–1040. doi:10.1021/am9000562CrossRefGoogle Scholar
  23. Emily R, Geoffrey S (2009) Bioinspiration—The solution for biofouling control? Bioinspir Biomim 4(1):015007CrossRefGoogle Scholar
  24. Epstein AK, Hong D, Kim P, Aizenberg J (2013) Biofilm attachment reduction on bioinspired, dynamic, micro-wrinkling surfaces. New J Phys 15(9):095018CrossRefGoogle Scholar
  25. Espinosa HD, Rim JE, Barthelat F, Buehler MJ (2009) Merger of structure and material in nacre and bone—perspectives on de novo biomimetic materials. Prog Mater Sci 54(8):1059–1100CrossRefGoogle Scholar
  26. Fischer SF, Thielen M, Weiss P, Seidel R, Speck T, Buhrig-Polaczek A, Bunck M (2014) Production and properties of a precision-cast bio-inspired composite. J Mater Sci 49(1):43–51. doi:10.1007/s10853-013-7878–4CrossRefGoogle Scholar
  27. Fratzl P (2008a) Bone fracture: when the cracks begin to show. Nat Mater 7(8):610–612CrossRefGoogle Scholar
  28. Fratzl P (2008b) Collagen: structure and mechanics, an introduction. In: Fratzl P (ed) Collagen: structure and mechanics. Springer, New YorkCrossRefGoogle Scholar
  29. Fratzl P, Weinkamer R (2007) Nature’s hierarchical materials. Prog Mater Sci 52(8):1263–1334. doi:10.1016/j.pmatsci.2007.06.001CrossRefGoogle Scholar
  30. Fratzl P, Gupta HS, Paschalis EP, Roschger P (2004) Structure and mechanical quality of the collagen-mineral nano-composite in bone. J Mater Chem 14(14):2115–2123. doi:10.1039/B402005GCrossRefGoogle Scholar
  31. Garcia AP, Sen D, Buehler MJ (2011) Hierarchical silica nanostructures inspired by diatom algae yield superior deformability, toughness, and strength. Metall Mater Trans A 42A(13):3889–3897. doi:10.1007/s11661-010-0477-yCrossRefGoogle Scholar
  32. Ge L, Sethi S, Ci L, Ajayan PM, Dhinojwala A (2007) Carbon nanotube-based synthetic gecko tapes. Proc Natl Acad Sci U S A 104(26):10792–10795. doi:10.1073/pnas.0703505104CrossRefGoogle Scholar
  33. Genin GM, Kent A, Birman V, Wopenka B, Pasteris JD, Marquez PJ, Thomopoulos S (2009) Functional grading of mineral and collagen in the attachment of tendon to bone. Biophys J 97(4):976–985. doi:10.1016/j.bpj.2009.05.043CrossRefGoogle Scholar
  34. Gower C (1936) The cause of blue color as found in the Bluebird (Sialia sialis) and the blue Jay (Cyanocitta cristata). Auk 53(2):178–185. doi:10.2307/4077277CrossRefGoogle Scholar
  35. Guldin S, Kolle M, Stefik M, Langford R, Eder D, Wiesner U, Steiner U (2011) Tunable mesoporous bragg reflectors based on block-copolymer self-assembly. Adv Mater 23(32):3664–3668. doi:10.1002/adma.201100640CrossRefGoogle Scholar
  36. Gupta HS, Seto J, Wagermaier W, Zaslansky P, Boesecke P, Fratzl P (2006) Cooperative deformation of mineral and collagen in bone at the nanoscale. Proc Natl Acad Sci U S A 103(47):17741–17746CrossRefGoogle Scholar
  37. Harrington MJ, Masic A, Holten-Andersen N, Waite JH, Fratzl P (2010) Iron-clad fibers: a metal-based biological strategy for hard flexible coatings. Science 328(5975):216–220. doi:10.1126/science.1181044CrossRefGoogle Scholar
  38. Henderson LJ, Heidinger BJ, Evans NP, Arnold KE (2013) Ultraviolet crown coloration in female blue tits predicts reproductive success and baseline corticosterone. Behav Ecol doi:10.1093/beheco/art066Google Scholar
  39. Hiller U (1968) Untersuchungen zum Feinbau und zur Funktion der Haftborsten von Reptilien. Z Morph Tiere 62(4):307–362. doi:10.1007/bf00401561CrossRefGoogle Scholar
  40. Ian BB, Joanna A, Marko L (2013) Creating bio-inspired hierarchical 3D–2D photonic stacks via planar lithography on self-assembled inverse opals. Bioinspir Biomim 8(4):045004CrossRefGoogle Scholar
  41. Jackson AP, Vincent JFV, Turner RM (1988) The mechanical design of nacre. Proc R Soc London Ser B 234(1277):415–440CrossRefGoogle Scholar
  42. Kamita G, Kolle M, Huang F, Baumberg JJ, Steiner U (2012) Multilayer mirrored bubbles with spatially-chirped and elastically-tuneable optical bandgaps. Opt Express 20(6):6421–6428. doi:10.1364/oe.20.006421CrossRefGoogle Scholar
  43. Kaushik AK, Podsiadlo P, Qin M, Shaw CM, Waas AM, Kotov NA, Arruda EM (2009) The role of nanoparticle layer separation in the finite deformation response of layered polyurethane-clay nanocomposites. Macromolecules 42(17):6588–6595. doi:10.1021/ma901048gCrossRefGoogle Scholar
  44. Kim P, Kreder MJ, Alvarenga J, Aizenberg J (2013) Hierarchical or not? Effect of the length scale and hierarchy of the surface roughness on omniphobicity of lubricant-infused substrates. Nano Lett 13(4):1793–1799. doi:10.1021/nl4003969Google Scholar
  45. Koch K, Bhushan B, Barthlott W (2009) Multifunctional surface structures of plants: an inspiration for biomimetics. Prog Mater Sci 54(2):137–178CrossRefGoogle Scholar
  46. Kolle M, Salgard-Cunha PM, Scherer MRJ, Huang F, Vukusic P, Mahajan S, Baumberg JJ, Steiner U (2010) Mimicking the colourful wing scale structure of the Papilio blumei butterfly. Nat Nano 5(7):511–515CrossRefGoogle Scholar
  47. Kolle M, Lethbridge A, Kreysing M, Baumberg JJ, Aizenberg J, Vukusic P (2013) Bio-inspired band-gap tunable elastic optical multilayer fibers. Adv Mater 25(15):2239–2245. doi:10.1002/adma.201203529CrossRefGoogle Scholar
  48. Launey ME, Buehler MJ, Ritchie RO (2010) On the mechanistic origins of toughness in bone. In: Clarke DR, Ruhle M, Zok F (eds) Annual review of materials research, vol 40, pp 25–53. doi:10.1146/annurev-matsci-070909-104427Google Scholar
  49. Leys SP, Yahel G, Reidenbach MA, Tunnicliffe V, Shavit U, Reiswig HM (2011) The sponge pump: the role of current induced flow in the design of the sponge body plan. PLoS ONE 6(12). doi:e2778710.1371/journal.pone.0027787Google Scholar
  50. Li Y, Huang XJ, Heo SH, Li CC, Choi YK, Cai WP, Cho SO (2006) Superhydrophobic bionic surfaces with hierarchical microsphere/SWCNT composite arrays. Langmuir 23(4):2169–2174. doi:10.1021/la0620758CrossRefGoogle Scholar
  51. Libanori R, Erb RM, Reiser A, Le Ferrand H, Suess MJ, Spolenak R, Studart AR (2012a) Stretchable heterogeneous composites with extreme mechanical gradients. Nat Commun 3:1265. doi:10.1038/ncomms2281CrossRefGoogle Scholar
  52. Libanori R, Munch FHL, Montenegro DM, Studart AR (2012b) Hierarchical reinforcement of polyurethane-based composites with inorganic micro- and nanoplatelets. Compos Sci Technol 72(3):435–445. doi:10.1016/j.compscitech.2011.12.005CrossRefGoogle Scholar
  53. Maganaris CN, Paul JP (1999) In vivo human tendon mechanical properties. J Physiol 521(1):307–313. doi:10.1111/j.1469-7793.1999.00307.xCrossRefGoogle Scholar
  54. McGraw KJ, Stoehr AM, Nolan PM, Hill GE (2001) Plumage redness predicts breeding onset and reproductive success in the House Finch: a validation of Darwin’s theory. J Avian Biol 32(1):90–94. doi:10.1034/j.1600-048X.2001.320114.xCrossRefGoogle Scholar
  55. Mengüç Y, Sitti M (2013) Gecko-inspired polymer adhesives. In: Polymer adhesion, friction, and lubrication. Wiley, pp 351–389. doi:10.1002/9781118505175.ch9Google Scholar
  56. Menig R, Meyers MH, Meyers MA, Vecchio KS (2000) Quasi-static and dynamic mechanical response of Haliotis rufescens (abalone) shells. Acta Materialia 48(9):2383–2398CrossRefGoogle Scholar
  57. Michael TN, Kimberly LT (2005) A batch fabricated biomimetic dry adhesive. Nanotechnology 16(8):1159CrossRefGoogle Scholar
  58. Mortensen A, Suresh S (1995) Functionally graded metals and metal-ceramic composites.1. Processing. Int Mater Rev 40(6):239–265CrossRefGoogle Scholar
  59. Müller R, Rüegsegger P (1997) Micro-tomographic imaging for the nondestructive evaluation of trabecular bone architecture. In: Lowet G, Rüegsegger P, Weinans H, Meunier A (eds) Bone research in biomechanics, vol 40 (Studies in health technology and informatics). IOS Press, Amsterdam, pp 61–79Google Scholar
  60. Munch E, Launey ME, Alsem DH, Saiz E, Tomsia AP, Ritchie RO (2008) Tough, bio-inspired hybrid materials. Science 322(5907):1516–1520. doi:10.1126/science.1164865CrossRefGoogle Scholar
  61. Munch E, Saiz E, Tomsia AP, Deville S (2009) Architectural control of freeze-cast ceramics through additives and templating. J Am Ceram Soc 92(7):1534–1539. doi:10.1111/j.1551-2916.2009.03087.xCrossRefGoogle Scholar
  62. Northen MT, Turner KL (2006) Meso-scale adhesion testing of integrated micro- and nano-scale structures. Sens Actuators A 130–131(0):583–587CrossRefGoogle Scholar
  63. Nova A, Keten S, Pugno NM, Redaelli A, Buehler MJ (2010) Molecular and nanostructural mechanisms of deformation, strength and toughness of spider silk fibrils. Nano Lett 10(7):2626–2634. doi:10.1021/nl101341wCrossRefGoogle Scholar
  64. Oeffner J, Lauder GV (2012) The hydrodynamic function of shark skin and two biomimetic applications. J Exp Biol 215(5):785–795. doi:10.1242/jeb.063040CrossRefGoogle Scholar
  65. Patankar NA (2004) Mimicking the lotus effect: influence of double roughness structures and slender pillars. Langmuir 20(19):8209–8213. doi:10.1021/la048629tCrossRefGoogle Scholar
  66. Prielipp H, Knechtel M, Claussen N, Streiffer SK, Müllejans H, Rühle M, Rödel J (1995) Strength and fracture toughness of aluminum/alumina composites with interpenetrating networks. Mater Sci Eng A 197(1):19–30CrossRefGoogle Scholar
  67. Qu L, Dai L, Stone M, Xia Z, Wang ZL (2008) Carbon nanotube arrays with strong shear binding-on and easy normal lifting-off. Science 322(5899):238–242. doi:10.1126/science.1159503CrossRefGoogle Scholar
  68. Ritchie RO (2011) The conflicts between strength and toughness. Nat Mater 10(11):817–822CrossRefGoogle Scholar
  69. Schumacher JF, Aldred N, Callow ME, Finlay JA, Callow JA, Clare AS, Brennan AB (2007a) Species-specific engineered antifouling topographies: correlations between the settlement of algal zoospores and barnacle cyprids. Biofouling 23(5):307–317. doi:10.1080/08927010701393276CrossRefGoogle Scholar
  70. Schumacher JF, Carman ML, Estes TG, Feinberg AW, Wilson LH, Callow ME, Callow JA, Finlay JA, Brennan AB (2007b) Engineered antifouling microtopographies—effect of feature size, geometry, and roughness on settlement of zoospores of the green alga Ulva. Biofouling 23(1):55–62. doi:10.1080/08927010601136957CrossRefGoogle Scholar
  71. Schumacher JF, Long CJ, Callow ME, Finlay JA, Callow JA, Brennan AB (2008) Engineered nanoforce gradients for inhibition of settlement (attachment) of swimming algal spores. Langmuir 24(9):4931–4937. doi:10.1021/la703421vCrossRefGoogle Scholar
  72. Sen D, Buehler MJ (2010) Atomistically-informed mesoscale model of deformation and failure of bioinspired hierarchical silica nanocomposites. Int J Appl Mech 2(4):699–717. doi:10.1142/s175882511000072xCrossRefGoogle Scholar
  73. Simon JL, Michna S, Lewis JA, Rekow ED, Thompson VP, Smay JE, Yampolsky A, Parsons JR, Ricci JL (2007) In vivo bone response to 3D periodic hydroxyapatite scaffolds assembled by direct ink writing. J Biomed Mater Res A 83A(3):747–758. doi:10.1002/jbm.a.31329CrossRefGoogle Scholar
  74. Smith BL, Schaffer TE, Viani M, Thompson JB, Frederick NA, Kindt J, Belcher A, Stucky GD, Morse DE, Hansma PK (1999) Molecular mechanistic origin of the toughness of natural adhesives, fibres and composites. Nature 399(6738):761–763CrossRefGoogle Scholar
  75. Studart AR (2012) Towards high-performance bioinspired composites. Adv Mater 24(37):5024–5044. doi:10.1002/adma.201201471CrossRefGoogle Scholar
  76. Studart AR (2013) Biological and bioinspired composites with spatially tunable heterogeneous architectures. Adv Funct Mater doi:10.1002/adfm.201300340Google Scholar
  77. Studart AR, Gonzenbach UT, Tervoort E, Gauckler LJ (2006) Processing routes to macroporous ceramics: a review. J Am Ceram Soc 89(6):1771–1789CrossRefGoogle Scholar
  78. Studart AR, Studer J, Xu L, Yoon K, Shum HC, Weitz DA (2011) Hierarchical porous materials made by drying complex suspensions. Langmuir 27(3):955–964. doi:10.1021/la103995 gCrossRefGoogle Scholar
  79. Studart AR, Libanori R, Erb RM (2013a) Chap. 15 Replicating biological design principles in synthetic composites. In: Materials design inspired by nature: function through inner architecture. The Royal Society of Chemistry, pp 322–358. doi:10.1039/9781849737555-00322Google Scholar
  80. Studart AR, Libanori R, Erb RM (2013b) Replicating biological design principles in synthetic composites. In: Fratzl P, Dunlop J, Weinkamer R (eds) Materials design inspired by nature: function through inner architecture. RSC Publishing, pp 322–358Google Scholar
  81. Su X, Belcher AM, Zaremba CM, Morse DE, Stucky GD, Heuer AH (2002) Structural and microstructural characterization of the growth lines and prismatic microarchitecture in red abalone shell and the microstructures of abalone “flat pearls”. Chem Mater 14(7):3106–3117. doi:10.1021/cm011739qCrossRefGoogle Scholar
  82. Sumitomo T, Kakisawa H, Owaki Y, Kagawa Y (2008) In situ transmission electron microscopy observation of reversible deformation in nacre organic matrix. J Mater Res 23(05):1466–1471. doi:10.1557/JMR.2008.0184CrossRefGoogle Scholar
  83. Sun J, Bhushan B, Tong J (2013a) Structural coloration in nature. RSC Adv 3(35):14862–14889. doi:10.1039/c3ra41096jCrossRefGoogle Scholar
  84. Sun K, Wei T-S, Ahn BY, Seo JY, Dillon SJ, Lewis JA (2013b) 3D printing of interdigitated Li-ion microbattery architectures. Adv Mater 25(33):4539–4543. doi:10.1002/adma.201301036CrossRefGoogle Scholar
  85. Symes MD, Kitson PJ, Yan J, Richmond CJ, Cooper GJT, Bowman RW, Vilbrandt T, Cronin L (2012) Integrated 3D-printed reactionware for chemical synthesis and analysis. Nat Chem 4(5):349–354CrossRefGoogle Scholar
  86. Thielen M, Schmitt CNZ, Eckert S, Speck T, Seidel R (2013a) Structure-function relationship of the foam-like pomelo peel (Citrus maxima)-an inspiration for the development of biomimetic damping materials with high energy dissipation. Bioinspir Biomim 8(2). doi:10.1088/1748-3182/8/2/025001Google Scholar
  87. Thielen M, Speck T, Seidel R (2013b) Viscoelasticity and compaction behaviour of the foam-like pomelo (Citrus maxima) peel. J Mater Sci 48(9):3469–3478. doi:10.1007/s10853-013-7137–8CrossRefGoogle Scholar
  88. Tompkins-MacDonald GJ, Leys SP (2008) Glass sponges arrest pumping in response to sediment: implications for the physiology of the hexactinellid conduction system. Marine Biol 154(6):973–984. doi:10.1007/s00227-008-0987-yCrossRefGoogle Scholar
  89. Toohey KS, Sottos NR, Lewis JA, Moore JS, White SR (2007) Self-healing materials with microvascular networks. Nat Mater 6(8):581–585CrossRefGoogle Scholar
  90. Vakifahmetoglu C, Pippel E, Woltersdorf J, Colombo P (2010) Growth of one-dimensional nanostructures in porous polymer-derived ceramics by catalyst-assisted pyrolysis. Part I: iron catalyst. J Am Ceram Soc 93(4):959–968. doi:10.1111/j.1551-2916.2009.03448.xCrossRefGoogle Scholar
  91. Vignolini S, Rudall PJ, Rowland AV, Reed A, Moyroud E, Faden RB, Baumberg JJ, Glover BJ, Steiner U (2012) Pointillist structural color in Pollia fruit. Proc Natl Acad Sci U S A 109(39):15712–15715. doi:10.1073/pnas.1210105109CrossRefGoogle Scholar
  92. Wagermaier W, Gupta HS, Gourrier A, Burghammer M, Roschger P, Fratzl P (2006) Spiral ­twisting of fiber orientation inside bone lamellae. Biointerphases 1(1):1–5. doi:10.1116/1.2178386CrossRefGoogle Scholar
  93. Wang L, Carrier RL (2011) Biomimetic topography: bioinspired cell culture substrates and scaffolds. In: George A (ed) Advances in biomimetics. (InTech)Google Scholar
  94. Wen L, Weaver JC, Lauder GV (2014) Biomimetic shark skin: design, fabrication and hydrodynamic function. J Exp Biol 217(10):1656–1666. doi:10.1242/jeb.097097CrossRefGoogle Scholar
  95. Yao HM, Dao M, Imholt T, Huang JM, Wheeler K, Bonilla A, Suresh S, Ortiz C (2010) Protection mechanisms of the iron-plated armor of a deep-sea hydrothermal vent gastropod. Proc Natl Acad Sci U S A 107(3):987–992. doi:10.1073/pnas.0912988107CrossRefGoogle Scholar
  96. Yoshimitsu Z, Nakajima A, Watanabe T, Hashimoto K (2002) Effects of surface structure on the hydrophobicity and sliding behavior of water droplets. Langmuir 18(15):5818–5822. doi:10.1021/la020088pCrossRefGoogle Scholar
  97. Yoshioka S, Kinoshita S (2002) Effect of macroscopic structure in iridescent color of the peacock feathers. Forma 17(2):169–181Google Scholar
  98. Young A (1971) Wing coloration and reflectance in Morpho butterflies as related to reproductive behavior and escape from avian predators. Oecologia 7(3):209–222. doi:10.1007/bf00345212CrossRefGoogle Scholar
  99. Zampieri A, Sieber H, Selvam T, Mabande GTP, Schwieger W, Scheffler F, Scheffler M, Greil P (2005) Biomorphic cellular SiSiC/zeolite ceramic composites: from Rattan palm to bioinspired structured monoliths for catalysis and sorption. Adv Mater 17(3):344∓. doi:10.1002/adma.200400672CrossRefGoogle Scholar
  100. Zeschky J, Goetz-Neunhoeffer F, Neubauer J, Lo SHJ, Kummer B, Scheffler M, Greil P (2003) Preceramic polymer derived cellular ceramics. Compos Sci Technol 63(16):2361–2370. doi:10.1016/s0266-3538(03)00269-0CrossRefGoogle Scholar
  101. Zhang W, Wang G, Liu Y, Zhao X, Zou D, Zhu C, Jin Y, Huang Q, Sun J, Liu X, Jiang X, Zreiqat H (2013) The synergistic effect of hierarchical micro/nano-topography and bioactive ions for enhanced osseointegration. Biomaterials 34(13):3184–3195CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.Complex Materials, Department of MaterialsETH ZurichZurichSwitzerland
  2. 2.Department of Mechanical and Industrial EngineeringNortheastern UniversityBostonUSA

Personalised recommendations