Skip to main content

Bioinspired Hierarchical Composites

Abstract

The structural design of composite materials at multiple length scales is a widespread strategy found in biological materials to optimize opposing properties or to combine multiple functional properties in a unique material system. The combination of this hierarchical structuring approach with the vast chemical repertoire available in synthetic systems is expected to lead to man-made composites with unprecedented functionalities. Alternatively, hierarchical materials can potentially achieve sufficient strength and toughness even if made out of weaker environmentally-friendly or bioresorbable building blocks. Replicating the hierarchical design principle of biological systems in synthetic materials is an exciting challenge that has been tackled by researchers across different scientific communities. In this chapter, we present state-of-the-art examples on attempts to identify fundamental design principles of hierarchical natural materials and to then mimic these bioinspired concepts in man-made materials. Three selected structural features that can be independently designed at multiple length scales in biological materials are described as examples: (i) mechanical reinforcement, (ii) porosity, and (iii) topography. By comparing biological and man-made materials exhibiting these hierarchical features, we provide an overview on the limitations of currently exploited top-down and bottom-up manufacturing technologies and on the opportunities for the future development of hierarchical composites inspired by the unique multiscale structure of biological materials.

Keywords

  • Synthetic Material
  • Marine Sponge
  • Small Length Scale
  • Apparent Contact Angle
  • Synthetic System

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-319-12868-9_8
  • Chapter length: 32 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   109.00
Price excludes VAT (USA)
  • ISBN: 978-3-319-12868-9
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Hardcover Book
USD   169.99
Price excludes VAT (USA)
Fig. 8.1
Fig. 8.2
Fig. 8.3
Fig. 8.4
Fig. 8.5
Fig. 8.6
Fig. 8.7
Fig. 8.8
Fig. 8.9

References

  • Arzt E, Gorb S, Spolenak R (2003) From micro to nano contacts in biological attachment devices. Proc Natl Acad Sci U S A 100(19):10603–10606. doi:10.1073/pnas.1534701100

    CrossRef  Google Scholar 

  • Autumn K, Hansen W (2006) Ultrahydrophobicity indicates a non-adhesive default state in gecko setae. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 192(11):1205–1212. doi:10.1007/s00359-006-0149-y

    CrossRef  Google Scholar 

  • Autumn K, Liang YA, Hsieh ST, Zesch W, Chan WP, Kenny TW, Fearing R, Full RJ (2000) Adhesive force of a single gecko foot-hair. Nature 405(6787):681–685

    CrossRef  Google Scholar 

  • Autumn K, Sitti M, Liang YA, Peattie AM, Hansen WR, Sponberg S, Kenny TW, Fearing R, ­Israelachvili JN, Full RJ (2002) Evidence for van der Waals adhesion in gecko setae. Proc Natl Acad Sci U S A 99(19):12252–12256. doi:10.1073/pnas.192252799

    CrossRef  Google Scholar 

  • Autumn K, Dittmore A, Santos D, Spenko M, Cutkosky M (2006) Frictional adhesion: a new angle on gecko attachment. J Exp Biol 209(18):3569–3579. doi:10.1242/jeb.02486

    CrossRef  Google Scholar 

  • Barthlott W, Neinhuis C (1997) Purity of the sacred lotus, or escape from contamination in biological surfaces. Planta 202(1):1–8

    CrossRef  Google Scholar 

  • Barthelat F, Espinosa H (2007) An experimental investigation of deformation and fracture of Nacre–Mother of Pearl. Exp Mech 47(3):311–324. doi:10.1007/s11340-007-9040-1

    CrossRef  Google Scholar 

  • Barthelat F, Li CM, Comi C, Espinosa HD (2006) Mechanical properties of nacre constituents and their impact on mechanical performance. J Mater Res 21(8):1977–1986. doi:10.1557/jmr.2006.0239

    CrossRef  Google Scholar 

  • Barthelat F, Tang H, Zavattieri PD, Li CM, Espinosa HD (2007) On the mechanics of mother-of-pearl: a key feature in the material hierarchical structure. J Mech Phys Solids 55(2):306–337. doi:10.1016/j.jmps.2006.07.007

    CrossRef  Google Scholar 

  • Bers AV, Wahl M (2004) The influence of natural surface microtopographies on fouling. Biofouling 20(1):43–51. doi:10.1080/08927010410001655533

    CrossRef  Google Scholar 

  • Billiet T, Vandenhaute M, Schelfhout J, Vlierberghe VS, Dubruel P (2012) A review of trends and limitations in hydrogel-rapid prototyping for tissue engineering. Biomaterials 33(26):6020–6041

    CrossRef  Google Scholar 

  • Bonderer LJ, Studart AR, Gauckler LJ (2008) Bioinspired design and assembly of platelet reinforced polymer films. Science 319(5866):1069–1073. doi:10.1126/science.1148726

    CrossRef  Google Scholar 

  • Bonderer LJ, Feldman K, Gauckler LJ (2010) Platelet-reinforced polymer matrix composites by combined gel-casting and hot-pressing. Part II: thermoplastic polyurethane matrix composites. Compos Sci Technol 70(13):1966–1972. doi:10.1016/j.compscitech.2010.07.016

    CrossRef  Google Scholar 

  • Bouville F, Maire E, Meille S, de Moortele VB, Stevenson AJ, Deville S (2014) Strong, tough and stiff bioinspired ceramics from brittle constituents. Nat Mater 13(5):508–514. doi:10.1038/nmat3915

    CrossRef  Google Scholar 

  • Buehler MJ (2010) Computational and theoretical materiomics: properties of biological and de novo bioinspired materials. J Comput Theor Nanosci 7(7):1203–1209. doi:10.1166/jctn.2010.1474

    CrossRef  Google Scholar 

  • Callow JA, Callow ME (2011) Trends in the development of environmentally friendly fouling-resistant marine coatings. Nat Commun 2:244

    CrossRef  Google Scholar 

  • Cazetta E, Schaefer H, Galetti M (2009) Why are fruits colorful? The relative importance of achromatic and chromatic contrasts for detection by birds. Evol Ecol 23(2):233–244. doi:10.1007/s10682-007-9217–1

    CrossRef  Google Scholar 

  • Cesarano J, Dellinger JG, Saavedra MP, Gill DD, Jamison RD, Grosser BA, Sinn-Hanlon JM, Goldwasser MS (2005) Customization of load-bearing hydroxyapatite lattice scaffolds. Int J Appl Ceram Technol 2(3):212–220. doi:10.1111/j.1744-7402.2005.02026.x

    CrossRef  Google Scholar 

  • Chen HY, Di JC, Wang N, Dong H, Wu J, Zhao Y, Yu JH, Jiang L (2011) Fabrication of hierarchically porous inorganic nanofibers by a general microemulsion electrospinning approach. Small 7(13):1779–1783. doi:10.1002/smll.201002376

    CrossRef  Google Scholar 

  • Cortese B, D’Amone S, Manca M, Viola I, Cingolani R, Gigli G (2008) Superhydrophobicity due to the hierarchical scale roughness of PDMS surfaces. Langmuir 24(6):2712–2718. doi:10.1021/la702764x

    CrossRef  Google Scholar 

  • Efimenko K, Rackaitis M, Manias E, Vaziri A, Mahadevan L, Genzer J (2005) Nested self-similar wrinkling patterns in skins. Nat Mater 4(4):293–297

    CrossRef  Google Scholar 

  • Efimenko K, Finlay J, Callow ME, Callow JA, Genzer J (2009) Development and testing of hierarchically wrinkled coatings for marine antifouling. ACS Appl Mater Interfaces 1(5):1031–1040. doi:10.1021/am9000562

    CrossRef  Google Scholar 

  • Emily R, Geoffrey S (2009) Bioinspiration—The solution for biofouling control? Bioinspir Biomim 4(1):015007

    CrossRef  Google Scholar 

  • Epstein AK, Hong D, Kim P, Aizenberg J (2013) Biofilm attachment reduction on bioinspired, dynamic, micro-wrinkling surfaces. New J Phys 15(9):095018

    CrossRef  Google Scholar 

  • Espinosa HD, Rim JE, Barthelat F, Buehler MJ (2009) Merger of structure and material in nacre and bone—perspectives on de novo biomimetic materials. Prog Mater Sci 54(8):1059–1100

    CrossRef  Google Scholar 

  • Fischer SF, Thielen M, Weiss P, Seidel R, Speck T, Buhrig-Polaczek A, Bunck M (2014) Production and properties of a precision-cast bio-inspired composite. J Mater Sci 49(1):43–51. doi:10.1007/s10853-013-7878–4

    CrossRef  Google Scholar 

  • Fratzl P (2008a) Bone fracture: when the cracks begin to show. Nat Mater 7(8):610–612

    CrossRef  Google Scholar 

  • Fratzl P (2008b) Collagen: structure and mechanics, an introduction. In: Fratzl P (ed) Collagen: structure and mechanics. Springer, New York

    CrossRef  Google Scholar 

  • Fratzl P, Weinkamer R (2007) Nature’s hierarchical materials. Prog Mater Sci 52(8):1263–1334. doi:10.1016/j.pmatsci.2007.06.001

    CrossRef  Google Scholar 

  • Fratzl P, Gupta HS, Paschalis EP, Roschger P (2004) Structure and mechanical quality of the collagen-mineral nano-composite in bone. J Mater Chem 14(14):2115–2123. doi:10.1039/B402005G

    CrossRef  Google Scholar 

  • Garcia AP, Sen D, Buehler MJ (2011) Hierarchical silica nanostructures inspired by diatom algae yield superior deformability, toughness, and strength. Metall Mater Trans A 42A(13):3889–3897. doi:10.1007/s11661-010-0477-y

    CrossRef  Google Scholar 

  • Ge L, Sethi S, Ci L, Ajayan PM, Dhinojwala A (2007) Carbon nanotube-based synthetic gecko tapes. Proc Natl Acad Sci U S A 104(26):10792–10795. doi:10.1073/pnas.0703505104

    CrossRef  Google Scholar 

  • Genin GM, Kent A, Birman V, Wopenka B, Pasteris JD, Marquez PJ, Thomopoulos S (2009) Functional grading of mineral and collagen in the attachment of tendon to bone. Biophys J 97(4):976–985. doi:10.1016/j.bpj.2009.05.043

    CrossRef  Google Scholar 

  • Gower C (1936) The cause of blue color as found in the Bluebird (Sialia sialis) and the blue Jay (Cyanocitta cristata). Auk 53(2):178–185. doi:10.2307/4077277

    CrossRef  Google Scholar 

  • Guldin S, Kolle M, Stefik M, Langford R, Eder D, Wiesner U, Steiner U (2011) Tunable mesoporous bragg reflectors based on block-copolymer self-assembly. Adv Mater 23(32):3664–3668. doi:10.1002/adma.201100640

    CrossRef  Google Scholar 

  • Gupta HS, Seto J, Wagermaier W, Zaslansky P, Boesecke P, Fratzl P (2006) Cooperative deformation of mineral and collagen in bone at the nanoscale. Proc Natl Acad Sci U S A 103(47):17741–17746

    CrossRef  Google Scholar 

  • Harrington MJ, Masic A, Holten-Andersen N, Waite JH, Fratzl P (2010) Iron-clad fibers: a metal-based biological strategy for hard flexible coatings. Science 328(5975):216–220. doi:10.1126/science.1181044

    CrossRef  Google Scholar 

  • Henderson LJ, Heidinger BJ, Evans NP, Arnold KE (2013) Ultraviolet crown coloration in female blue tits predicts reproductive success and baseline corticosterone. Behav Ecol doi:10.1093/beheco/art066

    Google Scholar 

  • Hiller U (1968) Untersuchungen zum Feinbau und zur Funktion der Haftborsten von Reptilien. Z Morph Tiere 62(4):307–362. doi:10.1007/bf00401561

    CrossRef  Google Scholar 

  • Ian BB, Joanna A, Marko L (2013) Creating bio-inspired hierarchical 3D–2D photonic stacks via planar lithography on self-assembled inverse opals. Bioinspir Biomim 8(4):045004

    CrossRef  Google Scholar 

  • Jackson AP, Vincent JFV, Turner RM (1988) The mechanical design of nacre. Proc R Soc London Ser B 234(1277):415–440

    CrossRef  Google Scholar 

  • Kamita G, Kolle M, Huang F, Baumberg JJ, Steiner U (2012) Multilayer mirrored bubbles with spatially-chirped and elastically-tuneable optical bandgaps. Opt Express 20(6):6421–6428. doi:10.1364/oe.20.006421

    CrossRef  Google Scholar 

  • Kaushik AK, Podsiadlo P, Qin M, Shaw CM, Waas AM, Kotov NA, Arruda EM (2009) The role of nanoparticle layer separation in the finite deformation response of layered polyurethane-clay nanocomposites. Macromolecules 42(17):6588–6595. doi:10.1021/ma901048g

    CrossRef  Google Scholar 

  • Kim P, Kreder MJ, Alvarenga J, Aizenberg J (2013) Hierarchical or not? Effect of the length scale and hierarchy of the surface roughness on omniphobicity of lubricant-infused substrates. Nano Lett 13(4):1793–1799. doi:10.1021/nl4003969

    Google Scholar 

  • Koch K, Bhushan B, Barthlott W (2009) Multifunctional surface structures of plants: an inspiration for biomimetics. Prog Mater Sci 54(2):137–178

    CrossRef  Google Scholar 

  • Kolle M, Salgard-Cunha PM, Scherer MRJ, Huang F, Vukusic P, Mahajan S, Baumberg JJ, Steiner U (2010) Mimicking the colourful wing scale structure of the Papilio blumei butterfly. Nat Nano 5(7):511–515

    CrossRef  Google Scholar 

  • Kolle M, Lethbridge A, Kreysing M, Baumberg JJ, Aizenberg J, Vukusic P (2013) Bio-inspired band-gap tunable elastic optical multilayer fibers. Adv Mater 25(15):2239–2245. doi:10.1002/adma.201203529

    CrossRef  Google Scholar 

  • Launey ME, Buehler MJ, Ritchie RO (2010) On the mechanistic origins of toughness in bone. In: Clarke DR, Ruhle M, Zok F (eds) Annual review of materials research, vol 40, pp 25–53. doi:10.1146/annurev-matsci-070909-104427

    Google Scholar 

  • Leys SP, Yahel G, Reidenbach MA, Tunnicliffe V, Shavit U, Reiswig HM (2011) The sponge pump: the role of current induced flow in the design of the sponge body plan. PLoS ONE 6(12). doi:e2778710.1371/journal.pone.0027787

    Google Scholar 

  • Li Y, Huang XJ, Heo SH, Li CC, Choi YK, Cai WP, Cho SO (2006) Superhydrophobic bionic surfaces with hierarchical microsphere/SWCNT composite arrays. Langmuir 23(4):2169–2174. doi:10.1021/la0620758

    CrossRef  Google Scholar 

  • Libanori R, Erb RM, Reiser A, Le Ferrand H, Suess MJ, Spolenak R, Studart AR (2012a) Stretchable heterogeneous composites with extreme mechanical gradients. Nat Commun 3:1265. doi:10.1038/ncomms2281

    CrossRef  Google Scholar 

  • Libanori R, Munch FHL, Montenegro DM, Studart AR (2012b) Hierarchical reinforcement of polyurethane-based composites with inorganic micro- and nanoplatelets. Compos Sci Technol 72(3):435–445. doi:10.1016/j.compscitech.2011.12.005

    CrossRef  Google Scholar 

  • Maganaris CN, Paul JP (1999) In vivo human tendon mechanical properties. J Physiol 521(1):307–313. doi:10.1111/j.1469-7793.1999.00307.x

    CrossRef  Google Scholar 

  • McGraw KJ, Stoehr AM, Nolan PM, Hill GE (2001) Plumage redness predicts breeding onset and reproductive success in the House Finch: a validation of Darwin’s theory. J Avian Biol 32(1):90–94. doi:10.1034/j.1600-048X.2001.320114.x

    CrossRef  Google Scholar 

  • Mengüç Y, Sitti M (2013) Gecko-inspired polymer adhesives. In: Polymer adhesion, friction, and lubrication. Wiley, pp 351–389. doi:10.1002/9781118505175.ch9

    Google Scholar 

  • Menig R, Meyers MH, Meyers MA, Vecchio KS (2000) Quasi-static and dynamic mechanical response of Haliotis rufescens (abalone) shells. Acta Materialia 48(9):2383–2398

    CrossRef  Google Scholar 

  • Michael TN, Kimberly LT (2005) A batch fabricated biomimetic dry adhesive. Nanotechnology 16(8):1159

    CrossRef  Google Scholar 

  • Mortensen A, Suresh S (1995) Functionally graded metals and metal-ceramic composites.1. Processing. Int Mater Rev 40(6):239–265

    CrossRef  Google Scholar 

  • Müller R, Rüegsegger P (1997) Micro-tomographic imaging for the nondestructive evaluation of trabecular bone architecture. In: Lowet G, Rüegsegger P, Weinans H, Meunier A (eds) Bone research in biomechanics, vol 40 (Studies in health technology and informatics). IOS Press, Amsterdam, pp 61–79

    Google Scholar 

  • Munch E, Launey ME, Alsem DH, Saiz E, Tomsia AP, Ritchie RO (2008) Tough, bio-inspired hybrid materials. Science 322(5907):1516–1520. doi:10.1126/science.1164865

    CrossRef  Google Scholar 

  • Munch E, Saiz E, Tomsia AP, Deville S (2009) Architectural control of freeze-cast ceramics through additives and templating. J Am Ceram Soc 92(7):1534–1539. doi:10.1111/j.1551-2916.2009.03087.x

    CrossRef  Google Scholar 

  • Northen MT, Turner KL (2006) Meso-scale adhesion testing of integrated micro- and nano-scale structures. Sens Actuators A 130–131(0):583–587

    CrossRef  Google Scholar 

  • Nova A, Keten S, Pugno NM, Redaelli A, Buehler MJ (2010) Molecular and nanostructural mechanisms of deformation, strength and toughness of spider silk fibrils. Nano Lett 10(7):2626–2634. doi:10.1021/nl101341w

    CrossRef  Google Scholar 

  • Oeffner J, Lauder GV (2012) The hydrodynamic function of shark skin and two biomimetic applications. J Exp Biol 215(5):785–795. doi:10.1242/jeb.063040

    CrossRef  Google Scholar 

  • Patankar NA (2004) Mimicking the lotus effect: influence of double roughness structures and slender pillars. Langmuir 20(19):8209–8213. doi:10.1021/la048629t

    CrossRef  Google Scholar 

  • Prielipp H, Knechtel M, Claussen N, Streiffer SK, Müllejans H, Rühle M, Rödel J (1995) Strength and fracture toughness of aluminum/alumina composites with interpenetrating networks. Mater Sci Eng A 197(1):19–30

    CrossRef  Google Scholar 

  • Qu L, Dai L, Stone M, Xia Z, Wang ZL (2008) Carbon nanotube arrays with strong shear binding-on and easy normal lifting-off. Science 322(5899):238–242. doi:10.1126/science.1159503

    CrossRef  Google Scholar 

  • Ritchie RO (2011) The conflicts between strength and toughness. Nat Mater 10(11):817–822

    CrossRef  Google Scholar 

  • Schumacher JF, Aldred N, Callow ME, Finlay JA, Callow JA, Clare AS, Brennan AB (2007a) Species-specific engineered antifouling topographies: correlations between the settlement of algal zoospores and barnacle cyprids. Biofouling 23(5):307–317. doi:10.1080/08927010701393276

    CrossRef  Google Scholar 

  • Schumacher JF, Carman ML, Estes TG, Feinberg AW, Wilson LH, Callow ME, Callow JA, Finlay JA, Brennan AB (2007b) Engineered antifouling microtopographies—effect of feature size, geometry, and roughness on settlement of zoospores of the green alga Ulva. Biofouling 23(1):55–62. doi:10.1080/08927010601136957

    CrossRef  Google Scholar 

  • Schumacher JF, Long CJ, Callow ME, Finlay JA, Callow JA, Brennan AB (2008) Engineered nanoforce gradients for inhibition of settlement (attachment) of swimming algal spores. Langmuir 24(9):4931–4937. doi:10.1021/la703421v

    CrossRef  Google Scholar 

  • Sen D, Buehler MJ (2010) Atomistically-informed mesoscale model of deformation and failure of bioinspired hierarchical silica nanocomposites. Int J Appl Mech 2(4):699–717. doi:10.1142/s175882511000072x

    CrossRef  Google Scholar 

  • Simon JL, Michna S, Lewis JA, Rekow ED, Thompson VP, Smay JE, Yampolsky A, Parsons JR, Ricci JL (2007) In vivo bone response to 3D periodic hydroxyapatite scaffolds assembled by direct ink writing. J Biomed Mater Res A 83A(3):747–758. doi:10.1002/jbm.a.31329

    CrossRef  Google Scholar 

  • Smith BL, Schaffer TE, Viani M, Thompson JB, Frederick NA, Kindt J, Belcher A, Stucky GD, Morse DE, Hansma PK (1999) Molecular mechanistic origin of the toughness of natural adhesives, fibres and composites. Nature 399(6738):761–763

    CrossRef  Google Scholar 

  • Studart AR (2012) Towards high-performance bioinspired composites. Adv Mater 24(37):5024–5044. doi:10.1002/adma.201201471

    CrossRef  Google Scholar 

  • Studart AR (2013) Biological and bioinspired composites with spatially tunable heterogeneous architectures. Adv Funct Mater doi:10.1002/adfm.201300340

    Google Scholar 

  • Studart AR, Gonzenbach UT, Tervoort E, Gauckler LJ (2006) Processing routes to macroporous ceramics: a review. J Am Ceram Soc 89(6):1771–1789

    CrossRef  Google Scholar 

  • Studart AR, Studer J, Xu L, Yoon K, Shum HC, Weitz DA (2011) Hierarchical porous materials made by drying complex suspensions. Langmuir 27(3):955–964. doi:10.1021/la103995 g

    CrossRef  Google Scholar 

  • Studart AR, Libanori R, Erb RM (2013a) Chap. 15 Replicating biological design principles in synthetic composites. In: Materials design inspired by nature: function through inner architecture. The Royal Society of Chemistry, pp 322–358. doi:10.1039/9781849737555-00322

    Google Scholar 

  • Studart AR, Libanori R, Erb RM (2013b) Replicating biological design principles in synthetic composites. In: Fratzl P, Dunlop J, Weinkamer R (eds) Materials design inspired by nature: function through inner architecture. RSC Publishing, pp 322–358

    Google Scholar 

  • Su X, Belcher AM, Zaremba CM, Morse DE, Stucky GD, Heuer AH (2002) Structural and microstructural characterization of the growth lines and prismatic microarchitecture in red abalone shell and the microstructures of abalone “flat pearls”. Chem Mater 14(7):3106–3117. doi:10.1021/cm011739q

    CrossRef  Google Scholar 

  • Sumitomo T, Kakisawa H, Owaki Y, Kagawa Y (2008) In situ transmission electron microscopy observation of reversible deformation in nacre organic matrix. J Mater Res 23(05):1466–1471. doi:10.1557/JMR.2008.0184

    CrossRef  Google Scholar 

  • Sun J, Bhushan B, Tong J (2013a) Structural coloration in nature. RSC Adv 3(35):14862–14889. doi:10.1039/c3ra41096j

    CrossRef  Google Scholar 

  • Sun K, Wei T-S, Ahn BY, Seo JY, Dillon SJ, Lewis JA (2013b) 3D printing of interdigitated Li-ion microbattery architectures. Adv Mater 25(33):4539–4543. doi:10.1002/adma.201301036

    CrossRef  Google Scholar 

  • Symes MD, Kitson PJ, Yan J, Richmond CJ, Cooper GJT, Bowman RW, Vilbrandt T, Cronin L (2012) Integrated 3D-printed reactionware for chemical synthesis and analysis. Nat Chem 4(5):349–354

    CrossRef  Google Scholar 

  • Thielen M, Schmitt CNZ, Eckert S, Speck T, Seidel R (2013a) Structure-function relationship of the foam-like pomelo peel (Citrus maxima)-an inspiration for the development of biomimetic damping materials with high energy dissipation. Bioinspir Biomim 8(2). doi:10.1088/1748-3182/8/2/025001

    Google Scholar 

  • Thielen M, Speck T, Seidel R (2013b) Viscoelasticity and compaction behaviour of the foam-like pomelo (Citrus maxima) peel. J Mater Sci 48(9):3469–3478. doi:10.1007/s10853-013-7137–8

    CrossRef  Google Scholar 

  • Tompkins-MacDonald GJ, Leys SP (2008) Glass sponges arrest pumping in response to sediment: implications for the physiology of the hexactinellid conduction system. Marine Biol 154(6):973–984. doi:10.1007/s00227-008-0987-y

    CrossRef  Google Scholar 

  • Toohey KS, Sottos NR, Lewis JA, Moore JS, White SR (2007) Self-healing materials with microvascular networks. Nat Mater 6(8):581–585

    CrossRef  Google Scholar 

  • Vakifahmetoglu C, Pippel E, Woltersdorf J, Colombo P (2010) Growth of one-dimensional nanostructures in porous polymer-derived ceramics by catalyst-assisted pyrolysis. Part I: iron catalyst. J Am Ceram Soc 93(4):959–968. doi:10.1111/j.1551-2916.2009.03448.x

    CrossRef  Google Scholar 

  • Vignolini S, Rudall PJ, Rowland AV, Reed A, Moyroud E, Faden RB, Baumberg JJ, Glover BJ, Steiner U (2012) Pointillist structural color in Pollia fruit. Proc Natl Acad Sci U S A 109(39):15712–15715. doi:10.1073/pnas.1210105109

    CrossRef  Google Scholar 

  • Wagermaier W, Gupta HS, Gourrier A, Burghammer M, Roschger P, Fratzl P (2006) Spiral ­twisting of fiber orientation inside bone lamellae. Biointerphases 1(1):1–5. doi:10.1116/1.2178386

    CrossRef  Google Scholar 

  • Wang L, Carrier RL (2011) Biomimetic topography: bioinspired cell culture substrates and scaffolds. In: George A (ed) Advances in biomimetics. (InTech)

    Google Scholar 

  • Wen L, Weaver JC, Lauder GV (2014) Biomimetic shark skin: design, fabrication and hydrodynamic function. J Exp Biol 217(10):1656–1666. doi:10.1242/jeb.097097

    CrossRef  Google Scholar 

  • Yao HM, Dao M, Imholt T, Huang JM, Wheeler K, Bonilla A, Suresh S, Ortiz C (2010) Protection mechanisms of the iron-plated armor of a deep-sea hydrothermal vent gastropod. Proc Natl Acad Sci U S A 107(3):987–992. doi:10.1073/pnas.0912988107

    CrossRef  Google Scholar 

  • Yoshimitsu Z, Nakajima A, Watanabe T, Hashimoto K (2002) Effects of surface structure on the hydrophobicity and sliding behavior of water droplets. Langmuir 18(15):5818–5822. doi:10.1021/la020088p

    CrossRef  Google Scholar 

  • Yoshioka S, Kinoshita S (2002) Effect of macroscopic structure in iridescent color of the peacock feathers. Forma 17(2):169–181

    Google Scholar 

  • Young A (1971) Wing coloration and reflectance in Morpho butterflies as related to reproductive behavior and escape from avian predators. Oecologia 7(3):209–222. doi:10.1007/bf00345212

    CrossRef  Google Scholar 

  • Zampieri A, Sieber H, Selvam T, Mabande GTP, Schwieger W, Scheffler F, Scheffler M, Greil P (2005) Biomorphic cellular SiSiC/zeolite ceramic composites: from Rattan palm to bioinspired structured monoliths for catalysis and sorption. Adv Mater 17(3):344∓. doi:10.1002/adma.200400672

    CrossRef  Google Scholar 

  • Zeschky J, Goetz-Neunhoeffer F, Neubauer J, Lo SHJ, Kummer B, Scheffler M, Greil P (2003) Preceramic polymer derived cellular ceramics. Compos Sci Technol 63(16):2361–2370. doi:10.1016/s0266-3538(03)00269-0

    CrossRef  Google Scholar 

  • Zhang W, Wang G, Liu Y, Zhao X, Zou D, Zhu C, Jin Y, Huang Q, Sun J, Liu X, Jiang X, Zreiqat H (2013) The synergistic effect of hierarchical micro/nano-topography and bioactive ions for enhanced osseointegration. Biomaterials 34(13):3184–3195

    CrossRef  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to André R. Studart .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Studart, A., Erb, R., Libanori, R. (2015). Bioinspired Hierarchical Composites. In: Kim, CS., Randow, C., Sano, T. (eds) Hybrid and Hierarchical Composite Materials. Springer, Cham. https://doi.org/10.1007/978-3-319-12868-9_8

Download citation