Skip to main content

A New Era in Sleep Monitoring: The Application of Mobile Technologies in Insomnia Diagnosis

  • Chapter
Mobile Health

Abstract

Sleep disorders, such as insomnia can seriously impair a patient’s quality of life. Existing studies have shown that insomniacs have a risk of hypertension 350 percent higher than normal sleepers. Insomnia is also a risk factor for diabetes, as well as anxiety and depression. Sleep measurements based on polysomnographic (PSG) signals and questionnaires are necessary for an accurate evaluation of insomnia; however PSG systems are uncomfortable and inconvenient as they require patients to stay overnight at sleep centers. There is an increasing interest in portable devices, which provide the opportunity for the assessment of insomnia in a native environment (e.g. patients’ homes). Due to recent advances in technology, it is now possible to continuously monitor a patient’s sleep at home and send their sleep data to a remote clinical back-end system for analysis and reporting. This chapter provides a systematic analysis on the sleep monitoring technologies that can be used for insomnia assessment and treatment. This study highlights the key technical challenges of sleep monitoring, describes different types of technologies and discusses their applications in insomnia assessment. An overview of some model-based signal processing for sleep staging and insomnia detection is presented. Lastly, this chapter ends with a discussion, which provides future directions for the deployment of effective in-home patient monitoring systems for insomnia diagnosis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Cvetkovic, D., Cosic, I.: Sleep Onset Estimator: Evaluation of Parameters. In: 30th Annual International Conference IEEE Engineering in Medicine and Biology Society (EMBS), Vancouver, Canada, pp. 3860–3863 (2008)

    Google Scholar 

  • De Carli, F., Nobili, L., Gelcich, P., Ferrill, F.: A method for the automatic detection of arousals during sleep. Sleep 22(5), 561–567 (1999)

    Google Scholar 

  • Karadeniz, D., Ondze, B., Besset, A.: EEG arousals and awakenings in relation with periodic leg movements during sleep. J. Sleep Res. 9, 273–277 (2000)

    Article  Google Scholar 

  • Shinar, Z., Akselrod, S., Dagan, Y., Baharav, A.: Autonomic changes during wake-sleep transition: A heart rate variability based approach. Autonomic Neuroscience: Basic and Clinical 130, 17–27 (2006)

    Article  Google Scholar 

  • Sugi, T., Kawana, F., Nakamura, M.: Automatic EEG arousal detection for sleep apnea syndrome. Biomedical Signal Processing and Control 4, 329–337 (2009)

    Article  Google Scholar 

  • Swarnkar, V., Abeyratne, U., Hukins, C., Duce, B.: A state transition-based method for quantifying EEG sleep fragmentation. Medical & Biological Engineering & Computing 47, 1053–1061 (2009)

    Article  Google Scholar 

  • Advanced Brain Monitoring (2013), Retrieved November 2013, from Advanced Sleep Group, http://advancedbrainmonitoring.com/

  • Ambulatory Monitoring, Inc. (2013), Retrieved November 2013, from Retrieved from http://www.ambulatory-monitoring.com/

  • Neurovigil, The iBrain device (2013), Retrieved November 2013, from http://www.neurovigil.com/ibrain/

  • WatchPAT (2013), Retrieved November 2013, from Itamar Medical: http://www.itamar-medical.com/WatchPAT.html

  • ActiGraph (2013), ActiSleep Sleep Monitor. Retrieved November 2013, from ActiGraph: http://www.theactigraph.com/products/actisleep/

  • Guilleminault, C.: American Sleep Disorders Association Task Force (Chair) EEG arousals: scoring rules and examples. Sleep 15, 173–184 (1992)

    Google Scholar 

  • Anderer, P., Roberts, S., Schlögl, A., Gruber, G., Klösch, G., Herrmann, W., et al.: Artifact Processing in Computerized Analysis of Sleep EEG - A Review. Neuropsychobiology 40(3), 150–157 (1999)

    Article  Google Scholar 

  • Grundlehner, B., Brown, L.: The Design and Analysis of a Real-Time, Continuous Arousal Monitor. In: 6th Int. Workshop on Wearable and Implantable Body Sensor Networks (2009)

    Google Scholar 

  • Badia, P., Wright Jr., K.P., Wauquier, A.: Fluctuations in single-hertz EEG activity during the transition to sleep. In: Ogilvie, R.D., Harsh, J.R. (eds.) Sleep Onset: Normal and Abnormal Processes. American Psychological Association, Washington (1994)

    Google Scholar 

  • Bates, J.: Fundamentals of Electroencephalography. Journal of Neurology, Neurosurgery, and Psychiatry 35(1) (1972)

    Google Scholar 

  • Berry, R.B., Budhiraja, R., Gottlieb, D.J., Gozal, D., Iber, C., Kapur, V.K., et al.: Rules for scoring respiratory events in sleep: update of the 2007 AASM Manual for the Scoring of Sleep and Associated Events. Deliberations of the Sleep Apnea Definitions Task Force of the American Academy of Sleep Medicine. J. Clin. Sleep Med. 8(5) (October 2012)

    Google Scholar 

  • Bonato, P.: Advances in wearable technology and its medical applications. In: Proc. IEEE EMBC (2009)

    Google Scholar 

  • Carskadon, M.A., Dement, W.C.: Normal human sleep: an overview. Principles and Practice of Sleep Medicine 4, 13–23 (1994)

    Google Scholar 

  • Cecelja, M., Chowienczyk, P.: Role of arterial stiffness in cardiovascular disease. JRSM Cardiovascular Disease 1(4) (2012)

    Google Scholar 

  • Chesson, A., Hartse, K., Anderson, W.M., Davila, D., Johnson, S., Littner, M., et al.: Practice Parameters for the Evaluation of Chronic Insomnia 23(2) (2000)

    Google Scholar 

  • Colten, H., Altevogt, B.M.: Sleep Disorders and Sleep Deprivation: An Unmet Public Health Problem. Institute of Medicine (US) Committee on Sleep Medicine and Research. National Academies Press (US), Washington (DC) (2006)

    Google Scholar 

  • Coyle, S., Lau, K.T., Moyna, N., Diamond, D., Francesco, F.D., Costanzo, D., et al.: BIOTEX—Biosensing textiles for personalised healthcare management 14(2) (2010)

    Google Scholar 

  • Danker-Hopfe, H., Anderer, P., Zeitlhofer, J., Boeck, M., Dorn, H., Gruber, G., et al.: Interrater reliability for sleep scoring according to the Rechtschaffen & Kales and the new AASM standard. Journal of Sleep Research 18(1), 74–84 (2009)

    Article  Google Scholar 

  • Jovanov, E., Hanish, V.: Avatar—A multi-sensory system for real time body position monitoring. IEEE EMBC, Minneapolis (2009)

    Google Scholar 

  • Hasan, J.: Past and future of computer-assisted sleep analysis and drowsiness assessment. Journal of Clinical Neurophysiology 13(4), 295–313 (1996)

    Article  MathSciNet  Google Scholar 

  • Hennig, A., Patzak, A.: Continuous blood pressure measurement using pulse transit time. Somnologie 17, 104–110 (2013)

    Article  Google Scholar 

  • Hori, T.: Spatiotemporal changes of EEG activity during waking-sleeping transition period. Inter. J. Neurosci. 27, 101–114 (1985)

    Article  Google Scholar 

  • Koley, B., Dey, D.: An ensemble system for automatic sleep stage classification using single channel EEG signal. Computers in Biology and Medicine 42(12), 1186–1195 (2012)

    Article  Google Scholar 

  • Lubin, A., Johnson, L.C., Austin, M.T.: Discrimination among states of conciousness using EEG spectra. Psychophysiology 6, 122–132 (1969)

    Article  Google Scholar 

  • Mendez, M., Bianchi, A., Montano, N., Patruno, V., Gil, E., Mantaras, C., et al.: On arousal from sleep: time-frequency analysis. Medical & Biological Engineering & Computing 46, 341–351 (2008)

    Article  Google Scholar 

  • Merica, H., Fortune, R.: Physiological Review, State transitions between wake and sleep, and within the ultradian cycle, with focus on the link to neuronal activity. Sleep Medicine Reviews 8, 473–485 (2004)

    Article  Google Scholar 

  • Moret-Bonillo, D., Alvarez-Estevez, V.: Identification of electroenceph-alographic arousals in multichannel sleep recordings. IEEE Transactions on Biomedical Engineering 58, 54–63 (2011)

    Article  Google Scholar 

  • Murali, N., Svatikova, A., Somers, V.: Cardiovascular physiology and sleep. Frontiers in Bioscience: A Journal and Virtual Library 8, 636–652 (2003)

    Article  Google Scholar 

  • Ogilvie, R.: The process of falling asleep. Physiological Review 5(3) (2001)

    Google Scholar 

  • Ogilvie, R., Simons, I., Kuderian, R., MacDonald, T., Rustenburg, J.: Behavioral, event-related potential, and EEG/FFT changes at sleep onset. Psychophysiology 28(1), 54–64 (1991)

    Article  Google Scholar 

  • Penzel, T., Conradt, R.: Computer based sleep recording and analysis. Sleep Medicine Reviews 4(2), 131–148 (2000)

    Article  Google Scholar 

  • Perlis, M., Sharpe, M., Smith, M., Greenblatt, D., Gile, D.: Behavioral Treatment of Insomnia: Treatment Outcome and the Relevance of Medical and Psychiatric Morbidity 24(3) (2001)

    Google Scholar 

  • Pitson, D.J., Stradling, J.R.: Autonomic markers or arousal during sleep sleep in patients undergoing investigation for obstructive sleep apnoea, their relationship to EEG arousals, respiratory events and subjective sleepiness. J. Sleep Res. 7, 53–59 (1998)

    Article  Google Scholar 

  • Pitson, D., et al.: Changes in pulse transit time and pulse rate as markers of arousal from sleep in normal subjects. Clin. Sci. 87, 269–273 (1994)

    Google Scholar 

  • Matthews, R., McDonald, N.: A Wearable Physiological Sensor Suite for Unobtrusive Monitoring of Physiological and Cognitive State. In: Proc. IEEE EMBS (2007)

    Google Scholar 

  • Reite, M., Buysse, D., Reynolds, C., Mendelson, W.: The Use of Polysomnography in the Evaluation of Insomnia. Standards of Practice Committee, American Sleep Disorders Association, Rochester, MN, Sleep Journal 18(01), 58–70 (1995)

    Google Scholar 

  • Riemann, D., Spiegelhalder, K., Feige, B., Voderholzer, U., Berger, M., Perlis, M., et al.: The hyperarousal model of insomnia: a review of the concept and its evidence 14(1) (2010)

    Google Scholar 

  • Smith, R.P., Argod, J., Pépin, J., Lévy, P.A.: Pulse transit time: an appraisal of potential clinical Applications. Thorax 54, 452–457 (1999)

    Article  Google Scholar 

  • Taylor, M., Grant, T., Knoefel, F., Goubran, R.: Bed occupancy measurements using under mattress pressure sensors for long term monitoring of community-dwelling older adults. In: IEEE Internatinational Symposium on Medical Measurements and Applications Proceedings (MeMeA), pp. 130–134 (2013)

    Google Scholar 

  • Thakor, J., Muthuswamy, N.V.: Spectral analysis methods for neurological signals. Journal of Neuroscience Methods 83(1), 1–14 (1998)

    Article  Google Scholar 

  • Van Hese, P., Philips, W., De Koninck, J., Van de Walle, R., Lemahieu, I.: Automatic detection of sleep stages using the EEG. In: Proceedings of the 23rd Annual International Conference of the IEEE Engineering in Medicine and Biology Society, vol. 2, pp. 1944–1947 (2001)

    Google Scholar 

  • Vullers, R., Van Schaijk, R., Visser, H., Penders, J., Van Hoof, C.: Energy harvesting for autonomous wireless sensor networks. IEEE Solid-State Circuits Magazine 2(2), 29–38 (2010)

    Article  Google Scholar 

  • Wong, A., McDonagh, D., Omeni, O., Nunn, C., Hernandez-Silveira, M., Burdett, A.: Sensium: An Ultra-Low-Power Wireless Body Sensor Network Platform: Design & Application Challenges. In: Proc. IEEE EMBC 2009 (2009)

    Google Scholar 

  • Yseboodt, L., Nil, M., Huisken, J., Berekovic, M., Zhao, Q., Bouwens, F., et al.: Design of 100 μW wireless sensor nodes for biomedical monitoring 57(1) (2009)

    Google Scholar 

  • Zephyr-BioHarness. BioHarness 3 - Zephyr Technology Corporation (2013), http://www.zephyranywhere.com/ (retrieved November 2013)

  • Zhang, Z., Zhao, L.: Objective and subjective measures for sleep disorders. Neuroscience Bulletin 23(4), 236–240 (2007)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sana Tmar-Ben Hamida .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Hamida, S.TB., Ahmed, B., Cvetkovic, D., Jovanov, E., Kennedy, G., Penzel, T. (2015). A New Era in Sleep Monitoring: The Application of Mobile Technologies in Insomnia Diagnosis. In: Adibi, S. (eds) Mobile Health. Springer Series in Bio-/Neuroinformatics, vol 5. Springer, Cham. https://doi.org/10.1007/978-3-319-12817-7_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-12817-7_5

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-12816-0

  • Online ISBN: 978-3-319-12817-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics