Skip to main content

Ubiquitous Health Monitoring: Integration of Wearable Sensors, Novel Sensing Techniques, and Body Sensor Networks

  • Chapter
Mobile Health

Part of the book series: Springer Series in Bio-/Neuroinformatics ((SSBN,volume 5))

Abstract

Emergence of the Internet and widespread use of mobile computing have brought traditional eHealth beyond the boundary of the clinical setting, evolving to mHealth which is patient-centered and ubiquitous. Faced with the world’s rapidly ageing population and its burden on the healthcare system, one of the intense areas of development in mHealth is continuous patient monitoring. It requires careful integration of wearable sensors and wireless body sensor networks. Unlike traditional ambulatory monitors, sensors for mHealth may appear in various forms, such as watches, jewelry, eyewear, and even smart garments. Recent work have focused on design for wearability, alternative sensing techniques, and mHealth-specific network topologies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. mHealth: New Horizons for Health through Mobile Technologies: Based on the findings of the second Global Survey on eHealth, World Health Organization (WHO), Geneva (November 2011), http://www.who.int/goe/publications/goe_mhealth_web.pdf

  2. Lan, N.D., Miluzzo, E., Lu, H., Peebles, D., Choudhury, T., Campbell, A.T.: A Survey of Mobile Phone Sensing. IEEE Communications Magazine 48(9), 140–150 (2010)

    Article  Google Scholar 

  3. Viet, V.Q., Lee, G., Choi, D.: Fall Detection based on Movement and Smart Phone Technology. In: Proc. IEEE International Conference on Computing and Communication Technologies, Research, Innovation, and Vision for the Future, Ho Chi Minh City, Vietnam, February 27-March 1, pp. 1–4 (2012)

    Google Scholar 

  4. Kaenampornpan, M., Anuchad, T., Supaluck, P.: Fall Detection Prototype for Thai Elderly in Mobile Computing Era. In: Proc. 9th International Conference on Telecommunications and Information Technology, May 17-19, pp. 446–449 (2011)

    Google Scholar 

  5. Kwon, S., Lee, J., Chung, G.S., Park, K.S.: Validation of heart rate extraction through an iPhone accelerometer. In: Proc. 33rd Annual International Conference of the IEEE EMBS, Boston, USA, August 30-September 3, pp. 5260–5263 (2011)

    Google Scholar 

  6. Scully, C.G., Lee, J., Meyer, J., Gorbach, A.M., Granquist-Fraser, D., Mendelson, Y., Chon, K.H.: Physiological Parameter Monitoring from Optical Recordings With a Mobile Phone. IEEE Transactions on Biomedical Engineering 59(2), 303–306 (2012)

    Article  Google Scholar 

  7. Kwon, S., Kim, H., Park, K.S.: Validation of heart rate extraction using video imaging on a built-in camera system of a smartphone. In: Proc. 34th Annual International Conference of the IEEE EMBS, San Diego, USA, August 28-September 1, pp. 2174–(2177)

    Google Scholar 

  8. Mikhelson, I.V., Lee, P., Bakhtiari, S., Elmer II, T.W., Katsaggelos, A.K., Sahakian, A.V.: Noncontact Millimeter-Wave Real-Time Detection and tracking of Heart Rate on an Ambulatory Subject. IEEE Transactions on Information Technology in Biomedicine 16(5), 927–934 (2012)

    Article  Google Scholar 

  9. Teng, X.F., Zhang, Y.T., Poon, C.C.Y., Bonato, P.: Wearable Medical Systems for p-Health. IEEE Review in Biomedical Engineering 1, 62–74 (2008)

    Article  Google Scholar 

  10. Raviele, A., Giada, F., Bergfeldt, L., et al.: Management of patients with palpitations: a position paper from the European Heart Rhythm Association. Europace 13(7), 920–934 (2011)

    Article  Google Scholar 

  11. Lee, R.-G., Chen, K.-C., Hsiao, C.-C., Tseng, C.-L.: A Mobile Care System With Alert Mechanism. IEEE Transactions on Information Technology in Biomedicine 11(5), 507–517 (2007)

    Article  Google Scholar 

  12. Song, W., Yu, H., Liang, C., Wang, Q., Shi, Y.: Body Monitoring System Design Based on Android Smartphone. In: Proc. 2012 World Congress on Information and Communication Technologies, Trivandrum, India, October 30-November 2, pp. 1147–1151 (2012)

    Google Scholar 

  13. Lim, J.-H., Park, C., Park, S.-J.: Home Healthcare Settop-box for Senior Chronic Care using ISO/IEEE 11073 PHD Standard. In: Proc. 32nd Annual International Conference of the IEEE EMBS, Buenos Aires, Argentina, August 31-September 4, pp. 216–219 (2010)

    Google Scholar 

  14. Cao, Z., Zhu, R., Que, R.-Y.: A Wireless Portable System With Microsensors for Monitoring Respiratory Diseases. IEEE Transactions on Biomedical Engineering 59(11), 3110–3116 (2012)

    Article  Google Scholar 

  15. Dal Negro, R.W., Micheletto, C., Tognella, S., Turati, C., Bisato, R., Guerriero, M., Sandri, M., Turco, P.: PIKO-1, and effective, handy device dor the patient’s personal PEFR and FEV1 electronic long-term monitoring. Monaldi Archives for Chest Disease 67(2), 84–89 (2007)

    Google Scholar 

  16. Lim, H.B., Ma, D., Wang, B., Kalbarczyk, Z., Iyer, R.K., Watkin, K.L.: A Soldier Health Monitoring System for Military Applications. In: Proc. 2010 International Conference on Body Sensor Networks, Singapore, June 7-9, pp. 246–249 (2010)

    Google Scholar 

  17. Park, S., Jayaraman, S.: Adaptive and Responsive Textile Structures (ARTS). In: Tao, X. (ed.) Smart Fibres, Fabrics and Clothing, ch. 13, pp. 226–245. CRC Press, Boca Raton (2001)

    Google Scholar 

  18. Montgomery, K., Mundt, C., Thonier, G., et al.: Lifeguard – A Personal Physiological Monitor for Extreme Environment. In: Proc. 26th Annual International Conference of the IEEE EMBS, San Francisco, USA, September 1-5, pp. 2192–2195 (2004)

    Google Scholar 

  19. Canina, M., Newman, D.J., Trotti, G.L.: Preliminary Considerations for Wearable Sensors for Astronauts in Exploration Scenarios. In: Proc. 3rd IEEE-EMBS International Summer School and Symposium on Medical Devices and Biosensors, Boston, USA, September 4-6, pp. 16–19 (2006)

    Google Scholar 

  20. Morris, D., Schazmann, B., Wu, Y., et al.: Wearable Sensors for Monitoring Sports Performance and Training. In: Proc. 5th International Summer School and Symposium on Medical Devices and Biosensors, Hong Kong, June 1-3, pp. 121–124 (2008)

    Google Scholar 

  21. Coyle, S., Morris, D., Lau, K.-T., Diamond, D., Moyna, N.: Textile-based wearable sensors for assisting sports performance. In: Proc. 6th International Workshop on Wearable and Implantable Body Sensor Networks, Berkeley, USA, June 3-5, pp. 307–311 (2009)

    Google Scholar 

  22. Ermes, M., Parkka, J., Mantyjarvi, J., Korhonen, I.: Detection of Daily Activities and Sports with Wearable Sensors in Controlled and Uncontrolled Conditions. IEEE Transaction in Information Technology in Biomedicine 12(1), 20–26 (2008)

    Article  Google Scholar 

  23. Mobile Health Market Trends and Figures 2013-2017 – The Commercialization of mHealth Applications, research2guidance, vol. 3, Berlin (2013)

    Google Scholar 

  24. World Population Ageing: 1950 - 2050, Population Division, Department of Economic and Social Affairs, United Nations, New York (2002), http://www.un.org/esa/population/publications/worldageing19502050/

  25. Global status report on noncommunicable diseases 2010: description of the global burden of NCDs, their risk factors and determinants, World Health Organization (WHO), Geneva (April 2011), http://www.who.int/nmh/publications/ncd_report2010/en/

  26. Chronic Disease and Palliative Care, Global Business Group on Health (December 2012), http://www.businessgrouphealth.org/global/issues/chronic.cfm

  27. Chi, Y.M., Jung, T.-P., Cauwenberghs, G.: Dry-Contact and Noncontact Biopotential Electrodes: Methodological Review. IEEE Reviews in Biomedical Engineering 3, 106–119 (2010)

    Article  Google Scholar 

  28. Neuman, M.R.: Biopotential Electrodes. In: Webster, J.G. (ed.) Medical Instrumentation: Application and Design, 4th edn., ch. 5, pp. 189–240. Wiley & Sons, New Jersey (2010)

    Google Scholar 

  29. Ryu, C.Y., Nam, S.H., Kim, S.: Conductive Rubber Electrode for Wearable Health Monitoring. In: Proc. 27th Annual International Conference of the IEEE EMBS, Shanghai, China, January 17-18, pp. 3479–3481 (2006)

    Google Scholar 

  30. Lee, S.H., Jung, S.M., Lee, C.K., Jeong, K.S., Cho, G., Yoo, S.K.: Wearable ECG monitoring system using conductive fabrics and active electrodes. In: Jacko, J.A. (ed.) HCI International 2009, Part III. LNCS, vol. 5612, pp. 778–783. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  31. Yoo, J., Yan, L., Lee, S., Kim, Y., Yoo, H.-J.: A 5.2mW self-configured Wearable Body Sensor Network Controller and a 12(W Wirelessly Powered Sensor for a Continuous Health Monitoring system. IEEE Journal of Solid-Sate Circuits 45(1), 178–188 (2010)

    Article  Google Scholar 

  32. Valchinov, E., Rutkovskis, A., Pallikarakis, N.: Wireless Dry-Contact Biopotential Electrode. In: Proc. 3rd International Conference on E-Health and Bioengineering, Iasi, Romania, November 24-26, pp. 1–4 (2011)

    Google Scholar 

  33. Sullivan, T.J., Deiss, S.R., Cauwenberghs, G.: A Low-Noise, Non-Contact EEG / ECG Sensor. In: Proc. IEEE Biomedical Circuits and System Conference, Montreal, November 27-30, pp. 154–157 (2007)

    Google Scholar 

  34. Taelman, J., Adriaensen, T., van der Horst, C., Linz, T., Spaepen, A.: Textile Integrated Contactless EMG Sensing for Stress Analysis. In: Proc. 29th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Lyon, August 22-26, pp. 3966–3969 (2007)

    Google Scholar 

  35. Breiser, K.H., Kluttig, A., Schumann, B., Kors, J.A., Swenne, C.A., Kuss, O., Werdan, K., Haerting, J.: Cardiovascular Disease, Risk Factor and Heart Rate Variability in the Elderly General Population: Design and Objectives of the CARdiovascular Disease, Living and Ageing in Halle (CARLA) Study. BMC Cardiovascular Disorder 5(33) (November 2005)

    Google Scholar 

  36. Phanphaisarn, W., Roeksabutr, A., Wardkein, P., Koseeyaporn, J., Yapin, P.P.: Heart Detection and Diagnosis Based on ECG and EPCG Relationships. Medical Devices: Evidence and Research 4, 133–144 (2011)

    Google Scholar 

  37. Abdel-Motaleb, I.M., Sambaraju, V.K.: Development of a Wireless Cardiogram System for Acute and Long-term Healthcare Monitoring. In: Proc. 2012 IEEE International Conference on Electro/Information Technology, Indianapolis, USA, May 6-8, pp. 1–6 (2012)

    Google Scholar 

  38. Webster, J.G.: Measurement of Flow and Volume of Blood. In: Webster, J.G. (ed.) Medical Instrumentation: Application and Design, 4th edn., vol. 5, pp. 338–376. Wiley & Sons, New Jersey (2010)

    Google Scholar 

  39. Poh, M.-Z., Kim, K., Goessling, A.D., Swenson, N.C., Picard, R.W.: Heartphones: Sensor Earphones and Mobile Application for Non-obtrusive Health Monitoring. In: Proc. International Symposium on Wearable Computers, Linz, Austria, September 4-7, pp. 153–154 (2009)

    Google Scholar 

  40. Kim, S.H., Ryoo, D.W., Bae, C.: Adaptive Noise Cancellation Using Accelerometers for the PPG Signal from Forehead. In: Proc. 30th Annual International Conference of the IEEE EMBS, Lyon, France, August 22-26, pp. 2564–2567 (2007)

    Google Scholar 

  41. Asada, H.H., Shaltis, P., Reisner, A., Rhee, S., Hutchinson, R.C.: Mobile Monitoring with Wearable Photoplethysmographic Biosensors. IEEE Engineering in Medicine and Biology Magazine 22(3), 28–40 (2003)

    Article  Google Scholar 

  42. Han, H., Kim, M.-J., Kim, J.: Development of real-time motion artifact reduction algorithm for a wearable phototplethysmogrphy. In: Proc. 29th Annual International Conference of the IEEE EMBS, Lyon, pp. 1538–1541 (2007)

    Google Scholar 

  43. Hung, K., Chan, W.M., Lee, C.C., Choy, S.-O., Kwok, P.: Preliminary Design of an Intelligent Finger-Ring Sensor for Physiologic Monitoring in Mobile Health. Presented in 2nd AMA-IEEE Medical Technology Conference, Boston, October 16-18 (2011)

    Google Scholar 

  44. Wong, A., Pun, K.P., Zhang, Y.T., Hung, K.: A Near-infrared heart rate measurement IC with very low cutoff frequency using current steering technique. IEEE Trans. Circuits Syst. I, Fundam. Theory Appl. 52(12), 2642–2647 (2005)

    Article  Google Scholar 

  45. Parati, G., Ochoa, J.E., Salvi, P.: Prognostics Value of Blood Pressure Variability and Average Blood Pressure Levels in Patients With Hypertension and Diabetes. Diabetes Care 36(suppl. 2), 312–324 (2013)

    Article  Google Scholar 

  46. Tanaka, S., Matsumoto, Y., Wakimoto, K.: Unconstrained an non-invasive measurement of heart-beat and respiration periods using a phonocardiographic sensor. Med. Biol. Eng. Comput. 40(2), 246–252 (2002)

    Article  Google Scholar 

  47. Poon, C.C.Y., Wong, Y.M., Zhang, Y.T.: M-Health: The Development of cuff-less and Wearable Blood Pressure Meters for Body Sensor Networks. In: Proc. IEEE / NLM Life Sci. Syste. Appl. Workshop, Bethesada, MD, July 13-14 (2006)

    Google Scholar 

  48. Zhang, X.Y., Zhang, Y.T.: The Effects of Local Mild Cold Exposure on Pulse Transit Time. Physiological Measurement 27(7), 649–660 (2006)

    Article  Google Scholar 

  49. Teng, X.F., Zhang, Y.T.: Theoretical Study on the Effects of Sensor Contacting Force on Pulse Transit Time. IEEE Transactions on Biomedical Engineering 54(8), 1490–1498 (2007)

    Article  MathSciNet  Google Scholar 

  50. McCombie, D.B., Reisner, A.T., Asada, H.H.: Motion Based Adaptive Calibration of Pulse Transit Time Measurements to Arterial Blood Pressure for an Autonomous, Wearable Blood Pressure Monitor. In: Proc. 30th Annual International Conference of the IEEE EMBS, Vancouver, Canada, August 20-24, pp. 989–992 (2008)

    Google Scholar 

  51. Guo, L., Berglin, L., Li, Y.J., Mattila, H., Mehrjerdi, A.K., Skrifvars, M.: Disappearing Sensor – Textile Based Sensor for Monitoring. In: Proc. 2011 International Conference on Control, Automation and Systems Engineering, Singapore, July 30-31, pp. 1–4 (2011)

    Google Scholar 

  52. Pavlath, G.A.: Fiber-optic gyroscopes. In: Proc. IEEE Lasers and Electro-Optics Society (LEOS) Annual Meeting, Boston, October 31-November 3, vol. 2, pp. 237–238 (1994)

    Google Scholar 

  53. Danisch, L., Englehart, K., Trivett, A.: Spatially continuous six degree of freedom position and orientation sensor. Sens. Rev. 19(2), 106–112 (1999)

    Article  Google Scholar 

  54. Donno, M., Palange, E., Di. Nicola, F., Bucci, G., Ciancetta, F.: A new flexible optical fiber goniometer for dynamic angular measurements: Application to human joint movement monitoring. IEEE Trans. Instrum. Meas. 57(8), 1614–1620 (2008)

    Article  Google Scholar 

  55. Poeggel, S., Leen, G., Bremer, K., Lewis, E.: Miniature Optical fiber combined pressure- and temperature sensor for medical applications. In: IEEE Sensors 2012, pp. 1–4 (2012)

    Google Scholar 

  56. D’Angelo, L.T., Weber, S., Honda, Y., Thiel, T., Narbonneau, F., Lüth, T.C.: A system for respiratory motion detection using optical fibers embedded into textiles. In: Proc. 30th Annual International Conference of the IEEE EMBS, Vancouver, August 20-25, pp. 3694–3697

    Google Scholar 

  57. De Jonckheere, J., Narbonneau, F., D’Angelo, L.T., Witt, J., Paquet, B., Kinet, D., Kreber, K., Logier, R.: FBG-based smart textiles for continuous monitoring of respiratory movements for healthcare applications. In: Proc. 2010 12th IEEE International Conference on e-Health Networking Applications and Services, Lyon, France, July 1-3, pp. 277–282 (2010)

    Google Scholar 

  58. Witt, J., Narbonneau, F., Schukar, M., Krebber, K., et al.: Medical Textiles With Embedded Fiber Optic Sensors for Monitoring of Respiratory Movement. IEEE Sensors Journal 12(1), 246–254

    Google Scholar 

  59. Lee, C.C., Hung, K., Chan, W.-M., Wu, Y.K., Choy, S.-O., Kwok, P.: FBG sensor for physiologic monitoring in M-health application. In: Proc. Asia Communications and Photonics Conference and Exhibition 2011, Shanghai, November 13-16, pp. 1–14 (2011)

    Google Scholar 

  60. Scheggi, A.M., Brenci, M., Conforti, G., Falciai, R.: Optical-fibre thermometer for medical use. IEE Proceedings H Microwaves, Optics and Antennas 131(4), 270–272 (1984)

    Article  Google Scholar 

  61. Sung, M., DeVaul, R., Jimenez, S., Gips, J., Pentland, A.: Shiver Motion and Core Body Temperature Classification for Wearable Soldier Health Monitoring Systems. In: Proc. 8th International Symposium on Wearable Computers, Arlington, USA, October 31-November 3, vol. 1, pp. 192–193 (2004)

    Google Scholar 

  62. Hung, K., Zhang, Y.T.: Preliminary investigation of pupil size variability: toward non-contact assessment of cardiovascular variability. In: Proc. 3rd. IEEE EMBS International Summer School in Medical Devices & Biosensors, Cambridge, pp. 137–140 (2006)

    Google Scholar 

  63. Ohtsuka, K., Asakura, K., Kawasaki, H., Sawa, M.: Respiratory fluctuations of the human pupil. Exp. Brain Res. 71(1), 215–217 (1988)

    Article  Google Scholar 

  64. Borgdorff, P.: Respiratory fluctuations in pupil size. Am. J. Physiol. 228(4), 1094–1102 (1975)

    Google Scholar 

  65. Calcagnini, G., Giovannelli, P., Censi, F., Bartolini, P., Barbaro, V.: Baroreceptor-sensitive fluctuations of heart rate and pupil diameter. In: Proc. 23rd Annual International Conference of the IEEE EMBS, Istanbul, Turkey, October 25-28, vol. 1, pp. 600–603 (2001)

    Google Scholar 

  66. Calcagnini, G., Censi, F., Lino, S., Cerutti, S.: Pupil Diameter Variability in Humans. In: Proc. 22nd Annual International Conference of the IEEE EMBS, Chicago, USA, July 23-28, vol. 3, pp. 2298–2301 (2000)

    Google Scholar 

  67. Hung, K.: Pupillary Dynamic Monitoring for Mobile Health. In: Proc. 39th International Conference of the IEEE IES, Vienna, Austria, November 10-13 (2013)

    Google Scholar 

  68. Falls Among Older Adults: An Overview, Centers for Disease Control and Prevention, USA (September 2013), http://www.cdc.gov/homeandrecreationalsafety/falls/adultfalls.html

  69. Purwar, A., Jeong, D.U., Chung, W.Y.: Activity Monitoring from Real-Time Triaxial Accelerometer data using Sensor Network. In: Proc. International Conference on Control, Automation and Systems, Seoul, Korea, October 17-20, pp. 2402–2406 (2007)

    Google Scholar 

  70. Fernandez-Caballero, A., Sokolova, M.V., Serrano-Cuerda, J., Castillo, J.C., Moreno, V., Castineira, R., Redondo, L.: HOLDS: Efficient Fall Detection Through Accelerometers and Computer Vision. In: Proc. 2012 8th International Conference on Intelligent Environments, Guanajuato, June 26-29, pp. 367–370 (2012)

    Google Scholar 

  71. Sorvala, A., Alasaarela, E., Sorvoja, H., Myllyla, R.: Activity Classification Using a State Transition Diagram and Activity Levels. In: Proc. 2012 6th International Symposium on Medical Information and Communication Technology, La Jolla, March 25-29, pp. 1–4 (2012)

    Google Scholar 

  72. Tong, L., Song, Q., Ge, Y., Liu, M.: HMM-Based Human Fall Detection and Prediction Method Using Tri-Axial Accelerometer. IEEE Sensors Journal 13(5), 1849–1856 (2013)

    Article  Google Scholar 

  73. Li, Q., Stankovic, J.A., Hanson, M.A., Barth, A.T., Lach, J., Zhou, G.: Accurate, Fast Fall Detection Using Gyroscopes and Accelerometer-Derived Posture Information. In: Proc. 6th International Workshop on Wearable and Implantable Body Sensor Networks, Berkeley, USA, June 3-5, pp. 138–143 (2009)

    Google Scholar 

  74. Tamura, T., Yoshimura, T., Sekine, M., Uchida, M., Tanaka, O.: A Wearable Airbag to Prevent Fall Injuries. IEEE Transactions on Information Technology in Biomedicine 13(6), 910–914 (2009)

    Article  Google Scholar 

  75. Garg, S.K., Potts, R.O., Ackerman, N.R., Fermi, S.J., Tamada, J.A., Chase, H.P.: Correlation of Fingerstick Blood Glucose Measurements with GlucoWatch Biographer Glucose Results in Young Subjects with Type 1 diabetes. Diabetes Care 22(10), 1708–1714 (1999)

    Article  Google Scholar 

  76. Chee, F., Fernando, T., Savkin, A.V., van Heerden, P.V.: The Use of MiniMed CGMS in Real-Time Glucose Monitoring. In: Proc. 7th Australian and New Zealand 2001 Intelligent Information Systems Conference, November 18-21, pp. 159–164 (2001)

    Google Scholar 

  77. MacKenzie, H.A., Ashton, H.S., Spiers, S., Shen, Y., Freeborn, S.S., Hannigan, J., Lindberg, J., Rae, P.: Advances in Photoacoustic Noninvasive Glucose Testing. Clinical Chemistry 45(9), 1587–1595 (1999)

    Google Scholar 

  78. Tweed, K.: Google Working on Smart Contact Lens to Monitor Diabetes. IEEE Spectrum (January 17, 2014), http://spectrum.ieee.org/tech-talk/biomedical/devices/google-working-on-smart-contact-lens-to-monitor-diabetes

  79. Anliker, U., Ward, J.A., Lukowicz, P., et al.: AMON: A Wearable Multiparameter Medical Monitoring and Alert System. IEEE Transactions on Information Technology in Biomedicine 8(4), 1–11 (2004)

    Article  Google Scholar 

  80. Shnayder, V., Chen, B.-R., Lorincz, K., Fulford-Jones, T.R.F., Welsh, M.: Sensor Networks for Medical Care. In: Proc. 3rd International Conference on Embedded Networked Sensor Systems, San Diego, USA, November 2-4, p. 314 (2005)

    Google Scholar 

  81. Grossman, P.: The LifeShirt: a Multi-function Ambulatory System Monitoring Health, Disease, and Medical Intervention in the Real World. Studies in Health Technology and Informatics 108, 133–141 (2004)

    Google Scholar 

  82. Noury, N., Dittmar, D., Corroy, C., et al.: A Smart Cloth for Ambulatory Telemonitoring of Physiological Parameters and Activity: the VTAMN project. In: Proc. 6th International Workshop on Enterprise Networking and Computer in Healthcare Industry, Grenoble, June 28-29, pp. 155–160 (2004)

    Google Scholar 

  83. Linz, T., Kallmayer, C., Aschenbrenner, R., Reichl, H.: Fully Integrated EKG Shirt Based on Embroidered Electrical Interconnections with Conductive Yearn and Miniaturized Flexible Electronics. In: Proc. International Workshop on Wearable and Implantable Body Sensor Networks, Boston, USA, April 3-5, pp. 23–26 (2006)

    Google Scholar 

  84. Zhang, Y.T., Poon, C.C.Y., Chan, C.H., Tsang, M.W.W., Wu, K.F.: A Health-shirt Using e-Textile Materials for the Continuous and Cuffless Monitoring of Arterial Blood Pressure. In: Proc. 3rd IEEE-EMBS International Summer School and Symposium on Medical Devices and Biosensors, Boston, USA, September 4-6, pp. 86–89 (2006)

    Google Scholar 

  85. Hung, K., Lee, C.C., Chan, W.M., Choy, S.-O., Kwok, P.: Development of a wearable system integrated with novel biomedical sensors for ubiquitous healthcare. In: Proc. 2012 Annual International Conference of the IEEE EMBS, San Diego, August 28-September 1, vol. 1, pp. 5802–5805 (2012)

    Google Scholar 

  86. Hung, K., Lee, C.C., Chan, W.M., Choy, S.-O., Kwok, P.: Development of Novel Wearable Sensors for Mobile Health. In: Proc. 2012 IEEE-EMBS International Conference on Biomedical and Health Informatics, Hong Kong, January 5-7, pp. 745–747 (2012)

    Google Scholar 

  87. Hanson, M.A., Powell, H.C., Barth, A.T., et al.: Body Area Sensor Networks: Challenges and Opportunities. IEEE Computer 42(1), 58–65

    Google Scholar 

  88. Shah, S.A., Raazi, S.M.K., Khan, R.A.: Wireless Sensor Networks Health Monitoring: Trends and Challenges. Journal of Emerging Trends in Computing and Information Sciences 3(3), 319–324 (2012)

    Google Scholar 

  89. IEEE 802.15 Working Group Documents, https://mentor.ieee.org/802.15/dcn/08/15-08-0792-00-0006-channel-model-updates-for-802-15-6.ppt (accessed on September 7, 2013)

  90. Wegmueller, M.S., Kuhn, A., Froehlic, J., Oberle, M., Felber, N., Kuster, N., Fichter, W.: An attempt to model the human body as a communication channel. IEEE Transaction on Biomedical Engineering 54, 1851–1857 (2007)

    Article  Google Scholar 

  91. Wang, W.C., Nie, Z.D., Guan, F., Leng, T.F., Wang, L.: Experimental Studies on Human Body Channel Communication Characteristics Based upon Capacitive Coupling. In: Proc. of 2011 International Conference on Body Sensor Networks, Dalas, USA, May 24-25, pp. 180–185 (2011)

    Google Scholar 

  92. Hachisuka, K., Nakata, A., Takeda, T., et al.: Development and Performance Analysis of an Intra-Body Communication Device. In: Proc. 12th International Conference on Transducers, Solid-State Sensors, Actuators and Microsystems, Boston, USA, June 8-12, pp. 1722–1725 (2003)

    Google Scholar 

  93. FCC Encyclopedia: Wireless Medical Telemetry Service (WMTS), http://www.fcc.gov/encyclopedia/wireless-medical-telemetry-service-wmts (accessed on September 7, 2013)

  94. Ben, A., Tony, B., Katja, S., Ernesto, Z., et al.: Ultra Wideband: Applications, Technology and Future Perspectives. In: Proc. International Workshop on Convergent Technologies, Oulu, Finland, June 6-10, pp. 1–6 (2005)

    Google Scholar 

  95. Ullah, S., Shen, B., Riazul, I.S., Khan, P., Saleem, S., Kwak, K.S.: A study of MAC protocols for WBANs. Sensors 10, 128–145 (2010)

    Article  Google Scholar 

  96. Ullah, S., Kwak, D., Lee, C., Lee, H., Kwak, K.S.: Numerical Analysis of CSMA/CA for Pattern-Based WBAN System. In: Proc. Biomedical Engineering and Informatics, Tianjin, China, October 17-19, pp. 1–3 (2009)

    Google Scholar 

  97. Otal, B., Alonso, L., Verikoukis, C.: Energy Efficiency Analysis of a Distributed Queuing Medium Access Control Protocol for Biomedical Wireless Sensor Networks in Saturation Conditions. Sensors 11, 1277–1296 (2011)

    Article  Google Scholar 

  98. Li, H.M., Tan, J.D.: Heartbeat-driven Medium-access Control for Body Sensor Networks. IEEE Transactions on Information Technology in Biomedicine 14, 44–51 (2010)

    Article  MathSciNet  Google Scholar 

  99. Marinkovic, S., Popovici, E.: Ultra low power signal oriented approach for wireless health monitoring. Sensors 12, 7917–7937 (2012)

    Article  Google Scholar 

  100. Fang, G., Dutkiewicz, E.: BodyMAC: Energy Efficient TDMA-Zbased MAC Protocol for Wireless Body Area Networks. In: Proc. 9th International Symposium on Communications and Information Technology, Incheon, Korea, September 28-30, pp. 1455–1459 (2009)

    Google Scholar 

  101. Rahman, M.O., Hong, C.S., Lee, S., Ban, Y.C.: ATLAS: A traffic load aware sensor MAC design for collaborative body area sensor networks. Sensors 11, 11560–11580 (2011)

    Article  Google Scholar 

  102. Kumar, P., Lee, H.-J.: Security Issues in Healthcare Applications Using Wireless Medical Sensor Networks: A Survey. Sensors (Basel) 12(1), 55–91 (2012)

    Google Scholar 

  103. Dimitriou, T., Loannis, K.: Security Issues in Biomedical Wireless Sensor Networks. In: Proc. 1st International Symposium on Applied Sciences on Biomedical and Communication Technologies, Aalborg, Denmark, October 25-28 (2008)

    Google Scholar 

  104. IEEE 802.15 WPANTM Task Group 6 (TG6) Body Area Networks, http://www.ieee802.org/15/pub/TG6.html

  105. Continua Health Alliance, http://www.continuaalliance.org/

  106. Office for Civil Rights, United State Department of Health and Human Services Medical Privacy. National Standards of Protect the Privacy of Personal-Health-Information, http://www.hhs.gov/ocr/privacy/hipaa/administrative/privacyrule/ (accessed on September 7, 2013)

  107. Health Information Technology for Economic and Clinical Health Act (HITECH), http://waysandmeans.house.gov/media/pdf/110/hit2.pdf (accessed on September 7, 2013)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kevin Hung .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Hung, K., Lee, C.C., Choy, SO. (2015). Ubiquitous Health Monitoring: Integration of Wearable Sensors, Novel Sensing Techniques, and Body Sensor Networks. In: Adibi, S. (eds) Mobile Health. Springer Series in Bio-/Neuroinformatics, vol 5. Springer, Cham. https://doi.org/10.1007/978-3-319-12817-7_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-12817-7_15

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-12816-0

  • Online ISBN: 978-3-319-12817-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics