Mobile Health pp 299-317 | Cite as

mHealth Monitoring System for Hospitalised Older Adults – Current Issues and Challenges

  • Mirza Mansoor BaigEmail author
  • Hamid Gholamhosseini
  • Martin J. Connolly
Part of the Springer Series in Bio-/Neuroinformatics book series (SSBN, volume 5)


The mobile healthcare (mHealth) applications are becoming increasingly important in monitoring and delivery of healthcare interventions. They are often considered as pocket computers, due to their advanced computing features and diverse capabilities. Their sophisticated sensors and advanced software applications make mHealth based applications more feasible and innovative. Advanced engineering, communication and information technologies combined with medical and clinical knowledge enable the possibility of remote, wireless, continuous monitoring of physiological parameters. These technologies facilitate the implementation of mHealth based patient monitoring and diagnostic systems virtually anywhere: home, hospital and outdoors (on the move). The proposed mHealth vital sign monitoring system in this chapter is aimed to help clinicians by illustrating the trace of critical physiological parameters, generating early warning/alerts and indicating any significant changes to the data. The system was validated with different set of collected data from 20 hospitalised older adults and achieved an accuracy of 95.83%, sensitivity of 100%, specificity of 93.15%, and predictability of 90.38% in compare with a clinician assessment for tachycardia, hypertension, hypotension, hypoxemia and hypothermia. Another important aspect of this chapter is to investigate challenges and critical issues related to the use of such applications in healthcare including reliability, efficiency, mobile phone platform variability, cost effectiveness, energy usage, user interface, quality of medical data, and security and privacy.


Vital signs monitoring mHealth monitoring decision support system fuzzy diagnosis system early warning mHealth challenges and issues 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Nangalia, V., Prytherch, D.R., Smith, G.B.: Health technology assessment review: remote monitoring of vital signs–current status and future challenges. Crit Care 14(5), 233 (2010)CrossRefGoogle Scholar
  2. 2.
    Klingeberg, T., Schilling, M.: Mobile wearable device for long term monitoring of vital signs. Computer Methods and Programs in Biomedicine 106(2), 89–96 (2012)CrossRefGoogle Scholar
  3. 3.
    Yu, V.L., Madoff, L.C.: ProMED-mail: an early warning system for emerging diseases. Clinical Infectious Diseases 39(2), 227 (2004)CrossRefGoogle Scholar
  4. 4.
    Lin, C.-F.: Mobile Telemedicine: A Survey Study. Journal of Medical Systems 36(2), 511–520 (2012)CrossRefGoogle Scholar
  5. 5.
    Klasnja, P., Pratt, W.: Healthcare in the pocket: Mapping the space of mobile-phone health interventions. Journal of Biomedical Informatics 45(1), 184–198 (2012)CrossRefGoogle Scholar
  6. 6.
    Garibaldi, J.: Fuzzy Expert Systems. In: Gabrys, B., et al. (eds.) Do Smart Adaptive Systems Exist? STUDFUZZ, vol. 173, pp. 105–132. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  7. 7.
    Basilakis, J., Lovell, N.H., Redmond, S.J., Celler, B.G.: Design of a Decision-Support Architecture for Management of Remotely Monitored Patients. IEEE Transactions on Information Technology in Biomedicine 14(5), 1216–1226 (2010)CrossRefGoogle Scholar
  8. 8.
    Kundu, M., Nasipuri, M., Kumar Basu, D.: Knowledge-based ECG interpretation: a critical review. Pattern Recognition 33(3), 351–373 (2000)CrossRefGoogle Scholar
  9. 9.
    Kyriacos, U., Jelsma, J., Jordan, S.: Monitoring vital signs using early warning scoring systems: a review of the literature. Journal of Nursing Management 19(3), 311–330 (2011)CrossRefGoogle Scholar
  10. 10.
    Farmer, A., Gibson, O., Hayton, P., Bryden, K., Dudley, C., Neil, A., Tarassenko, L.: A real-time, mobile phone-based telemedicine system to support young adults with type 1 diabetes. Informatics in Primary Care 13(3), 171–178 (2005)Google Scholar
  11. 11.
    Tatara, N., Årsand, E., Hartvigsen, G.: Patient-user involvement for designing a self-help tool for Type 2 diabetes. Therapeutic Strategies A Challenge for User Involvement in Design 336(7639), 53 (2010)Google Scholar
  12. 12.
    Tatara, N.: Designing mobile patient-centric self-help terminals for people with diabetes. In: Proceedings of the 11th International Conference on Human-Computer Interaction with Mobile Devices and Services Bonn, MobileHCI 2009, Germany (2009)Google Scholar
  13. 13.
    Cho, J.H., Lee, H.C., Lim, D.J., Kwon, H.S., Yoon, K.H.: Mobile communication using a mobile phone with a glucometer for glucose control in Type 2 patients with diabetes: as effective as an Internet-based glucose monitoring system. Journal of Telemedicine and Telecare 15(2), 77–82 (2009)CrossRefGoogle Scholar
  14. 14.
    AgaMatrix (2012), JAZZ-Blood Glucose Monitoring System,
  15. 15.
    Al Ameen, M., Liu, J., Kwak, K.: Security and Privacy Issues in Wireless Sensor Networks for Healthcare Applications. Journal of Medical Systems 36(1), 93–101 (2012)CrossRefGoogle Scholar
  16. 16.
    Weerasinghe, D., Rajarajan, M., Rakocevic, V.: Device Data Protection in Mobile Healthcare Applications. In: Weerasinghe, D. (ed.) Electronic Healthcare. LNICST, vol. 1, pp. 82–89. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  17. 17.
  18. 18.
    Nonin. Onyx II, Model 9560- fingertip pulse oximeter,
  19. 19.
    Accu-Chek. Accu-Chek Compact Plus Blood Glucose meter system,
  20. 20.
    Omron. Omron MC-510 Instant Ear Thermometer,
  21. 21.
    McPhee, S.J., Papadakis, M.A., Rabow, M.W.: Current Medical Diagnosis & Treatment 2012. McGraw-Hill Medical (2010)Google Scholar
  22. 22.
    Sadegh-Zadeh, K.: Fuzzy health, illness, and disease. Journal of Medicine and Philosophy 25(5), 605–638 (2000)CrossRefGoogle Scholar
  23. 23.
    Innocent, P.R., John, R.I.: Computer aided fuzzy medical diagnosis. Information Sciences 162(2), 81–104 (2004)CrossRefGoogle Scholar
  24. 24.
    Kundel, H.L., Polansky, M.: Measurement of observer agreement. Radiology 228, 303–308 (2003)CrossRefGoogle Scholar
  25. 25.
    Lee, H.J., Lee, S.H., Ha, K.-S., Jang, H.C., Chung, W.-Y., Kim, J.Y., Chang, Y.-S., Yoo, D.H.: Ubiquitous healthcare service using Zigbee and mobile phone for elderly patients. International Journal of Medical Informatics 78(3), 193–198 (2009)CrossRefGoogle Scholar
  26. 26.
    Schleyer, T., Mattsson, U., Ni Riordain, R., Brailo, V., Glick, M., Zain, R., Jontell, M.: Advancing oral medicine through informatics and information technology: a proposed framework and strategy. Oral Diseases 17(suppl. S1), 85–94 (2011)CrossRefGoogle Scholar
  27. 27.
    Steele, R., Lo, A., Secombe, C., Wong, Y.K.: Elderly persons’ perception and acceptance of using wireless sensor networks to assist healthcare. International Journal of Medical Informatics 78(12), 788–801 (2009)CrossRefGoogle Scholar
  28. 28.
    Dilmaghani, R.S., Bobarshad, H., Ghavami, M., Choobkar, S., Wolfe, C.: Wireless Sensor Networks for Monitoring Physiological Signals of Multiple Patients. IEEE Transactions on Biomedical Circuits and Systems 5(4), 347–356 (2011)CrossRefGoogle Scholar
  29. 29.
    Imhoff, M.: Medical Device Alarms–The Clinician, pp. 17–18 (2009)Google Scholar
  30. 30.
    Bergmann, J., McGregor, A.: Body-Worn Sensor Design: What Do Patients and Clinicians Want? Annals of Biomedical Engineering 39(9), 2299–2312 (2011)CrossRefGoogle Scholar
  31. 31.
    Macropinch, Personal Heart Rate Meter (2012),
  32. 32.
    Lorenz, A., Oppermann, R.: Mobile health monitoring for the elderly: Designing for diversity. Pervasive and Mobile Computing 5(5), 478–495 (2009)CrossRefGoogle Scholar
  33. 33.
    Patrick, K., Griswold, W.G., Raab, F., Intille, S.S.: Health and the mobile phone. American Journal of Preventive Medicine 35(2), 177 (2008)CrossRefGoogle Scholar
  34. 34.
    Lim, Y., Hong, K., Kim, K., Shin, J., Lee, S., Chung, G., Baek, H., Jeong, D.-U., Park, K.: Monitoring physiological signals using nonintrusive sensors installed in daily life equipment. Biomedical Engineering Letters 1(1), 11–20 (2011)CrossRefGoogle Scholar
  35. 35.
    Apiletti, D., Baralis, E., Bruno, G., Cerquitelli, T.: Real-Time Analysis of Physiological Data to Support Medical Applications. IEEE Transactions on Information Technology in Biomedicine 13(3), 313–321 (2009)CrossRefGoogle Scholar
  36. 36.
    Hung, M.-C., Jen, W.-Y.: The Adoption of Mobile Health Management Services: An Empirical Study. Journal of Medical Systems 36(3), 1381–1388 (2012)CrossRefGoogle Scholar
  37. 37.
    Carrión, I., Fernández-Alemán, J.L., Toval, A.: Usable Privacy and Security in Personal Health Records. In: Campos, P., Graham, N., Jorge, J., Nunes, N., Palanque, P., Winckler, M. (eds.) INTERACT 2011, Part IV. LNCS, vol. 6949, pp. 36–43. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  38. 38.
    Yonglin, R., Pazzi, R.W.N., Boukerche, A.: Monitoring patients via a secure and mobile healthcare system. IEEE Wireless Communications 17(1), 59–65 (2010)CrossRefGoogle Scholar
  39. 39.
    Wang, Y., Lin, J., Annavaram, M., Jacobson, Q.A., Hong, J., Krishnamachari, B., Sadeh, N.: A framework of energy efficient mobile sensing for automatic user state recognition, pp. 179–192 (2009)Google Scholar
  40. 40.
    Medjahed, H., Istrate, D., Boudy, J., Dorizzi, B.: A fuzzy logic system for home elderly people monitoring (EMUTEM). Fuzzy Systems (2009)Google Scholar
  41. 41.
    Fjeldsoe, B.S., Marshall, A.L., Miller, Y.D.: Behavior change interventions delivered by mobile telephone short-message service. American Journal of Preventive Medicine 36(2), 165–173 (2009)CrossRefGoogle Scholar
  42. 42.
    Abroms, L.C., Ahuja, M., Kodl, Y., Thaweethai, L., Sims, J., Winickoff, J.P., Windsor, R.A.: Text2Quit: Results From a Pilot Test of a Personalized, Interactive Mobile Health Smoking Cessation Program. Journal of Health Communication 17(suppl.1), 44–53 (2012)Google Scholar
  43. 43.
    Pollonini, L., Rajan, N., Xu, S., Madala, S., Dacso, C.: A Novel Handheld Device for Use in Remote Patient Monitoring of Heart Failure Patients—Design and Preliminary Validation on Healthy Subjects. Journal of Medical Systems 36(2), 653–659 (2012)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Mirza Mansoor Baig
    • 1
    Email author
  • Hamid Gholamhosseini
    • 1
  • Martin J. Connolly
    • 2
  1. 1.Department of Electrical and Electronics Engineering, School of EngineeringAuckland University of TechnologyAucklandNew Zealand
  2. 2.Freemasons’ Professor of Geriatric MedicineUniversity of Auckland North Shore HospitalAucklandNew Zealand

Personalised recommendations