Skip to main content

Epigenetics of Human Obesity: A Link Between Genetics and Nutrition

  • Chapter
  • First Online:
Molecular Mechanisms Underpinning the Development of Obesity

Abstract

Epigenetic refers to the study of heritable changes in gene expression that do not modify DNA sequence. The underlying main epigenetic mechanisms comprise DNA methylation, histone modifications and the non-coding micro RNAs (miRNAs). These mechanisms are responsible for maintaining the patterns of gene expression during cellular differentiation. Moreover, there is a link between genetic and epigenetic mechanisms, in which some single nucleotide polymorphisms can interact with nutrients and other bioactive food components. This nutrient-gene interaction can lead to the modulation of gene expression in response to the nutritional factors. When we eat, we introduce some bioactive dietary components that can modify patterns of gene expression thus influencing the phenotype. There is considerable evidence that the pre- or the conception stage strongly influence the risk of developing obesity in later life. In this chapter, we review epigenetic mechanisms involved in the susceptibility and development of obesity. We have collected some of the most recent results on epiobesogenic genes and some nutrients involved in epigenetic changes. Further understanding on how these genes and nutrients act may help toward personalized treatment for obesity-related co-morbidities based on individual needs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Swinburn B, Sacks G, Hall KD et al (2011) The global obesity pandemic: shaped by global drivers and local environments. Lancet 378:804–814

    PubMed  Google Scholar 

  2. Herrera BM, Keildson S, Lindgren CM (2011) Genetics and epigenetics of obesity. Maturitas 69:41–49

    CAS  PubMed Central  PubMed  Google Scholar 

  3. Stunkard AJ, Foch TT, Hrubec Z (1986) A twin study of human obesity. JAMA 256:51–54

    CAS  PubMed  Google Scholar 

  4. Stunkard AJ, Sørensen TI, Hanis C et al (1986) An adoption study of human obesity. N Engl J Med 314:193–198

    CAS  PubMed  Google Scholar 

  5. Hjelmborg JB, Fagnani C, Silventoinen K et al (2008) Genetic influences on growth traits of BMI: a longitudinal study of adult twins. Obesity (Silver Spring) 16:847–852

    Google Scholar 

  6. Wardle J, Carnell S, Haworth CM, Plomin R (2008) Evidence for a strong genetic influence on childhood adiposity despite the force of the obesogenic environment. Am J Clin Nutr 87:398–404

    CAS  PubMed  Google Scholar 

  7. Silventoinen K, Rokholm B, Kaprio J, Sørensen TIA (2010) The genetic and environmental influences on childhood obesity: a systematic review of twin and adoption studies. Int J Obes (Lond) 34:29–40

    CAS  Google Scholar 

  8. Berndt SI, Gustafsson S, Mägi R et al (2013) Genome-wide meta-analysis identifies 11 new loci for anthropometric traits and provides insights into genetic architecture. Nat Genet 45:501–512

    CAS  PubMed Central  PubMed  Google Scholar 

  9. Frayling TM, Timpson NJ, Weedon MN et al (2007) A common variant in the FTO gene is associated with body mass index and predisposes to childhood and adult obesity. Science 316:889–894

    CAS  PubMed Central  PubMed  Google Scholar 

  10. Speliotes EK, Willer CJ, Berndt SI et al (2010) Association analyses of 249,796 individuals reveal 18 new loci associated with body mass index. Nat Genet 42:937–948

    CAS  PubMed Central  PubMed  Google Scholar 

  11. Loke KY, Lin JB, Mabel DY (2008) 3rd College of paediatrics and child health lecture-the past, the present and the shape of things to come. Ann Acad Med Singap 37:429–434

    PubMed  Google Scholar 

  12. Waddington CH (2014) The strategy of the genes: a discussion of some aspects of theoretical biology. Routledge library editions: 20th Century Science

    Google Scholar 

  13. Morange M (2002) The relations between genetics and epigenetics: a historical point of view. Ann N Y Acad Sci 981:50–60

    CAS  PubMed  Google Scholar 

  14. Campión J, Milagro FI, Martínez JA (2009) Individuality and epigenetics in obesity. Obes Rev 10:383–392

    PubMed  Google Scholar 

  15. Ling C, Groop L (2009) Epigenetics: a molecular link between environmental factors and type 2 diabetes. Diabetes 58:2718–2725

    CAS  PubMed Central  PubMed  Google Scholar 

  16. Girardot M, Cavaillé J, Feil R (2012) Small regulatory RNAs controlled by genomic imprinting and their contribution to human disease. Epigenetics 7:1341–1348

    CAS  PubMed Central  PubMed  Google Scholar 

  17. Holliday R (1990) DNA methylation and epigenetic inheritance. Philos Trans R Soc Lond B Biol Sci 326:329–338

    CAS  PubMed  Google Scholar 

  18. Riggs AD, Martienssen RA, Russo VEA (1996) Introduction. In: Riggs AD, Martienssen RA, Russo VEA (eds) Epigenetic mech, Gene regul cold spring harbor laboratory Press: Plainview, New York, p. 692

    Google Scholar 

  19. Feil R, Fraga MF (2011) Epigenetics and the environment: emerging patterns and implications. Nat Rev Genet 13:97–109

    Google Scholar 

  20. Heijmans BT, Tobi EW, Stein AD et al (2008) Persistent epigenetic differences associated with prenatal exposure to famine in humans. Proc Natl Acad Sci U S A 105:17046–17049

    CAS  PubMed Central  PubMed  Google Scholar 

  21. Kucharski R, Maleszka J, Foret S, Maleszka R (2008) Nutritional control of reproductive status in honeybees via DNA methylation. Science 319:1827–1830

    CAS  PubMed  Google Scholar 

  22. Lyko F, Foret S, Kucharski R et al (2010) The honey bee epigenomes: differential methylation of brain DNA in queens and workers. PLoS Biol 8:e1000506

    PubMed Central  PubMed  Google Scholar 

  23. Kim D-H, Doyle MR, Sung S, Amasino RM (2009) Vernalization: winter and the timing of flowering in plants. Annu Rev Cell Dev Biol 25:277–299

    CAS  PubMed  Google Scholar 

  24. Wolff GL, Kodell RL, Moore SR, Cooney CA (1998) Maternal epigenetics and methyl supplements affect agouti gene expression in Avy/a mice. FASEB J 12:949–957

    CAS  PubMed  Google Scholar 

  25. Bird A (2007) Perceptions of epigenetics. Nature 447:396–398

    CAS  PubMed  Google Scholar 

  26. Rakyan VK, Blewitt ME, Druker R et al (2002) Metastable epialleles in mammals. Trends Genet 18:348–351

    CAS  PubMed  Google Scholar 

  27. Waterland RA, Jirtle RL (2003) Transposable elements: targets for early nutritional effects on epigenetic gene regulation. Mol Cell Biol 23:5293–5300

    CAS  PubMed Central  PubMed  Google Scholar 

  28. Khosla S, Dean W, Brown D et al (2001) Culture of preimplantation mouse embryos affects fetal development and the expression of imprinted genes. Biol Reprod 64:918–926

    CAS  PubMed  Google Scholar 

  29. Tobi EW, Lumey LH, Talens RP et al (2009) DNA methylation differences after exposure to prenatal famine are common and timing- and sex-specific. Hum Mol Genet 18:4046–4053

    CAS  PubMed Central  PubMed  Google Scholar 

  30. Hirasawa R, Feil R (2010) Genomic imprinting and human disease. Essays Biochem 48:187–200

    CAS  PubMed  Google Scholar 

  31. Saetrom P, Snøve O, Rossi JJ (2007) Epigenetics and microRNAs. Pediatr Res 61:17R–23R

    CAS  PubMed  Google Scholar 

  32. Kim JK, Samaranayake M, Pradhan S (2009) Epigenetic mechanisms in mammals. Cell Mol Life Sci 66:596–612

    CAS  PubMed Central  PubMed  Google Scholar 

  33. Handel AE, Ebers GC, Ramagopalan SV (2010) Epigenetics: molecular mechanisms and implications for disease. Trends Mol Med 16:7–16

    CAS  PubMed  Google Scholar 

  34. Relton CL, Davey Smith G (2010) Epigenetic epidemiology of common complex disease: prospects for prediction, prevention, and treatment. PLoS Med 7:e1000356

    PubMed Central  PubMed  Google Scholar 

  35. Bird A (2002) DNA methylation patterns and epigenetic memory. Genes Dev 16:6–21

    CAS  PubMed  Google Scholar 

  36. Campión J, Milagro FI, Martínez J a (2009) Individuality and epigenetics in obesity. Obes Rev 10:383–392

    PubMed  Google Scholar 

  37. Law JA, Jacobsen SE (2010) Establishing, maintaining and modifying DNA methylation patterns in plants and animals. Nat Rev Genet 11:204–220

    CAS  PubMed Central  PubMed  Google Scholar 

  38. Costello JF, Plass C (2001) Methylation matters. J Med Genet 38:285–303

    CAS  PubMed Central  PubMed  Google Scholar 

  39. Chen T, Li E (2006) Establishment and maintenance of DNA methylation patterns in mammals. Curr Top Microbiol Immunol 301:179–201

    CAS  PubMed  Google Scholar 

  40. Lillycrop K a, Burdge GC (2011) Epigenetic changes in early life and future risk of obesity. Int J Obes (Lond) 35:72–83

    CAS  Google Scholar 

  41. Reik W, Lewis A (2005) Co-evolution of X-chromosome inactivation and imprinting in mammals. Nat Rev Genet 6:403–410

    CAS  PubMed  Google Scholar 

  42. Zhang Y, Reinberg D (2001) Transcription regulation by histone methylation: interplay between different covalent modifications of the core histone tails. Genes Dev 15:2343–2360

    CAS  PubMed  Google Scholar 

  43. Van Holde KE (1989) Chromatin. New York: Springer-Verlag. p. 497

    Google Scholar 

  44. Olins AL, Olins DE (1974) Spheroid chromatin units (v bodies). Science 183:330–332

    CAS  PubMed  Google Scholar 

  45. Khorasanizadeh S (2004) The nucleosome: from genomic organization to genomic regulation. Cell 116:259–272

    CAS  PubMed  Google Scholar 

  46. Zhou VW, Goren A, Bernstein BE (2011) Charting histone modifications and the functional organization of mammalian genomes. Nat Rev Genet 12:7–18

    PubMed  Google Scholar 

  47. Zhu Q, Wani AA (2010) Histone modifications: crucial elements for damage response and chromatin restoration. J Cell Physiol 223:283–288

    CAS  PubMed Central  PubMed  Google Scholar 

  48. Jenuwein T, Allis CD (2001) Translating the histone code. Science 293:1074–1080

    CAS  PubMed  Google Scholar 

  49. Shiio Y, Eisenman RN (2003) Histone sumoylation is associated with transcriptional repression. Proc Natl Acad Sci U S A 100:13225–13230

    CAS  PubMed Central  PubMed  Google Scholar 

  50. Egger G, Liang G, Aparicio A, Jones PA (2004) Epigenetics in human disease and prospects for epigenetic therapy. Nature 429:457–463

    CAS  PubMed  Google Scholar 

  51. Youngson NA, Morris MJ (2013) What obesity research tells us about epigenetic mechanisms. Philos Trans R Soc Lond B Biol Sci 368:20110337

    PubMed Central  PubMed  Google Scholar 

  52. McKay JA, Mathers JC (2011) Diet induced epigenetic changes and their implications for health. Acta Physiol (Oxf) 202:103–118

    CAS  Google Scholar 

  53. Bladé C, Baselga-Escudero L, Salvadó MJ, Arola-Arnal A (2013) miRNAs, polyphenols, and chronic disease. Mol Nutr Food Res 57:58–70

    PubMed  Google Scholar 

  54. Sevignani C, Calin GA, Siracusa LD, Croce CM (2006) Mammalian microRNAs: a small world for fine-tuning gene expression. Mamm Genome 17:189–202

    CAS  PubMed Central  PubMed  Google Scholar 

  55. Pillai RS, Bhattacharyya SN, Filipowicz W (2007) Repression of protein synthesis by miRNAs: how many mechanisms? Trends Cell Biol 17:118–126

    CAS  PubMed  Google Scholar 

  56. Bentwich I, Avniel A, Karov Y et al (2005) Identification of hundreds of conserved and nonconserved human microRNAs. Nat Genet 37:766–770

    CAS  PubMed  Google Scholar 

  57. Martinelli R, Nardelli C, Pilone V et al (2010) miR-519d overexpression is associated with human obesity. Obesity (Silver Spring) 18:2170–2176

    CAS  Google Scholar 

  58. Williams MD, Mitchell GM (2012) MicroRNAs in insulin resistance and obesity. Exp Diabetes Res 2012:484696.

    PubMed Central  PubMed  Google Scholar 

  59. Teperino R, Lempradl A, Pospisilik JA (2013) Bridging epigenomics and complex disease: the basics. Cell Mol Life Sci 70:1609–1621

    CAS  PubMed  Google Scholar 

  60. McGregor RA, Choi MS (2011) microRNAs in the regulation of adipogenesis and obesity. Curr Mol Med 11:304–316

    CAS  PubMed Central  PubMed  Google Scholar 

  61. Dehwah MAS, Xu A, Huang Q (2012) MicroRNAs and type 2 diabetes/obesity. J Genet Genomics 39:11–18

    CAS  PubMed  Google Scholar 

  62. Wang J, Hevi S, Kurash JK et al (2009) The lysine demethylase LSD1 (KDM1) is required for maintenance of global DNA methylation. Nat Genet 41:125–129. doi:10.1038/ng.268

    CAS  PubMed  Google Scholar 

  63. Zhao Q, Rank G, Tan YT et al (2009) PRMT5-mediated methylation of histone H4R3 recruits DNMT3A, coupling histone and DNA methylation in gene silencing. Nat Struct Mol Biol 16:304–311

    CAS  PubMed  Google Scholar 

  64. Byun H-M, Siegmund KD, Pan F et al (2009) Epigenetic profiling of somatic tissues from human autopsy specimens identifies tissue- and individual-specific DNA methylation patterns. Hum Mol Genet 18:4808–4817

    CAS  PubMed  Google Scholar 

  65. Lister R, Pelizzola M, Dowen RH et al (2009) Human DNA methylomes at base resolution show widespread epigenomic differences. Nature 462:315–322

    CAS  PubMed Central  PubMed  Google Scholar 

  66. Drong a W, Lindgren CM, McCarthy MI (2012) The genetic and epigenetic basis of type 2 diabetes and obesity. Clin Pharmacol Ther 92:707–715

    CAS  PubMed  Google Scholar 

  67. Milagro FI, Mansego ML, De Miguel C, Martínez JA Dietary factors, epigenetic modifications and obesity outcomes: progresses and perspectives. Mol Aspects Med 34:782–812

    Google Scholar 

  68. Bell CG, Finer S, Lindgren CM et al (2010) Integrated genetic and epigenetic analysis identifies haplotype-specific methylation in the FTO type 2 diabetes and obesity susceptibility locus. PLoS One 5:e14040

    PubMed Central  PubMed  Google Scholar 

  69. Almén MS, Jacobsson J, Moschonis G et al (2012) Genome wide analysis reveals association of a FTO gene variant with epigenetic changes. Genomics 99:132–137

    PubMed  Google Scholar 

  70. Toperoff G, Aran D, Kark JD et al (2012) Genome-wide survey reveals predisposing diabetes type 2-related DNA methylation variations in human peripheral blood. Hum Mol Genet 21:371–383

    CAS  PubMed Central  PubMed  Google Scholar 

  71. Gerken T, Girard CA, Tung Y-CL et al (2007) The obesity-associated FTO gene encodes a 2-oxoglutarate-dependent nucleic acid demethylase. Science 318:1469–1472

    CAS  PubMed Central  PubMed  Google Scholar 

  72. Xu X, Su S, Barnes VA et al (2013) A genome-wide methylation study on obesity: differential variability and differential methylation. Epigenetics 8:522–533

    CAS  PubMed Central  PubMed  Google Scholar 

  73. Wang X, Zhu H, Snieder H et al (2010) Obesity related methylation changes in DNA of peripheral blood leukocytes. BMC Med 8:87

    PubMed Central  PubMed  Google Scholar 

  74. Tobi EW, Heijmans BT, Kremer D et al (2011) DNA methylation of IGF2, GNASAS, INSIGF and LEP and being born small for gestational age. Epigenetics 6:171–176

    CAS  PubMed Central  PubMed  Google Scholar 

  75. Brøns C, Jacobsen S, Nilsson E et al (2010) Deoxyribonucleic acid methylation and gene expression of PPARGC1A in human muscle is influenced by high-fat overfeeding in a birth-weight-dependent manner. J Clin Endocrinol Metab 95:3048–3056

    PubMed  Google Scholar 

  76. Crujeiras AB, Campion J, Díaz-Lagares A et al (2013) Association of weight regain with specific methylation levels in the NPY and POMC promoters in leukocytes of obese men: a translational study. Regul Pept 186:1–6

    CAS  PubMed  Google Scholar 

  77. Lan MY, Chang YY, Chen WH et al (2009) Serotonin transporter gene promoter polymorphism is associated with body mass index and obesity in non-elderly stroke patients. J Endocrinol Invest 32:119–122

    CAS  PubMed  Google Scholar 

  78. Calati R, De Ronchi D, Bellini M, Serretti A (2011) The 5-HTTLPR polymorphism and eating disorders: a meta-analysis. Int J Eat Disord 44:191–199

    PubMed  Google Scholar 

  79. Zhao J, Goldberg J, Vaccarino V (2013) Promoter methylation of serotonin transporter gene is associated with obesity measures: a monozygotic twin study. Int J Obes (Lond) 37:140–145

    CAS  Google Scholar 

  80. Ollikainen M, Smith KR, Joo EJ-H et al (2010) DNA methylation analysis of multiple tissues from newborn twins reveals both genetic and intrauterine components to variation in the human neonatal epigenome. Hum Mol Genet 19:4176–4188

    CAS  PubMed  Google Scholar 

  81. Relton CL, Groom A, St Pourcain B et al (2012) DNA methylation patterns in cord blood DNA and body size in childhood. PLoS One 7:e31821

    CAS  PubMed Central  PubMed  Google Scholar 

  82. Godfrey KM, Sheppard A, Gluckman PD et al (2011) Epigenetic gene promoter methylation at birth is associated with child’s later adiposity. Diabetes 60:1528–1534

    CAS  PubMed Central  PubMed  Google Scholar 

  83. Soubry A, Schildkraut JM, Murtha A et al (2013) Paternal obesity is associated with IGF2 hypomethylation in newborns: results from a Newborn Epigenetics Study (NEST) cohort. BMC Med 11:29

    CAS  PubMed Central  PubMed  Google Scholar 

  84. Soubry A, Murphy SK, Wang F et al (2013) Newborns of obese parents have altered DNA methylation patterns at imprinted genes. Int J Obes (Lond) doi:10.1038/ijo.2013.193

    Google Scholar 

  85. Souren NYP, Tierling S, Fryns J-P et al (2011) DNA methylation variability at growth-related imprints does not contribute to overweight in monozygotic twins discordant for BMI. Obesity (Silver Spring) 19:1519–1522

    CAS  Google Scholar 

  86. Drong AW, Nicholson G, Hedman AK et al (2013) The presence of methylation quantitative trait loci indicates a direct genetic influence on the level of DNA methylation in adipose tissue. PLoS ONE 8:e55923

    CAS  PubMed Central  PubMed  Google Scholar 

  87. Rönn T, Volkov P, Davegårdh C et al (2013) A six months exercise intervention influences the genome-wide DNA methylation pattern in human adipose tissue. PLoS Genet 9:e1003572

    PubMed Central  PubMed  Google Scholar 

  88. Meerson A, Traurig M, Ossowski V et al (2013) Human adipose microRNA-221 is upregulated in obesity and affects fat metabolism downstream of leptin and TNF-. Diabetologia 56:1971–1979

    CAS  PubMed Central  PubMed  Google Scholar 

  89. Xie H, Lim B, Lodish HF (2009) MicroRNAs induced during adipogenesis that accelerate fat cell development are downregulated in obesity. Diabetes 58:1050–1057

    Google Scholar 

  90. Takanabe R, Ono K, Abe Y et al (2008) Up-regulated expression of microRNA-143 in association with obesity in adipose tissue of mice fed high-fat diet. Biochem Biophys Res Commun 376:728–732

    CAS  PubMed  Google Scholar 

  91. Klöting N, Berthold S, Kovacs P et al (2009) MicroRNA expression in human omental and subcutaneous adipose tissue. PLoS One 4:e4699

    PubMed Central  PubMed  Google Scholar 

  92. Ortega FJ, Moreno-Navarrete JM, Pardo G et al (2010) MiRNA expression profile of human subcutaneous adipose and during adipocyte differentiation. PLoS ONE 5:e9022

    PubMed Central  PubMed  Google Scholar 

  93. Godfrey KM, Gluckman PD, Hanson MA (2010) Developmental origins of metabolic disease: life course and intergenerational perspectives. Trends Endocrinol Metab 21:199–205

    CAS  PubMed  Google Scholar 

  94. Obermann-Borst S, Eilers PHC, Tobi EW et al (2013) Duration of breastfeeding and gender are associated with methylation of the LEPTIN gene in very young children. Pediatr Res 74:344–349

    CAS  PubMed  Google Scholar 

  95. Dyer JS, Rosenfeld CR (2011) Metabolic imprinting by prenatal, perinatal, and postnatal overnutrition: a review. Semin Reprod Med 29:266–276

    CAS  PubMed  Google Scholar 

  96. Faulk C, Dolinoy DC (2011) Timing is everything: the when and how of environmentally induced changes in the epigenome of animals. Epigenetics 6:791–797

    CAS  PubMed Central  PubMed  Google Scholar 

  97. Tollefsbol TO (2014) Dietary epigenetics in cancer and aging. Cancer Treat Res 159:257–267

    PubMed  Google Scholar 

  98. Seki Y, Williams L, Vuguin PM, Charron MJ (2012) Minireview: epigenetic programming of diabetes and obesity: animal models. Endocrinology 153:1031–1038

    CAS  PubMed Central  PubMed  Google Scholar 

  99. Lumey LH, Stein AD, Kahn HS et al (2007) Cohort profile: the Dutch hunger winter families study. Int J Epidemiol 36:1196–1204

    CAS  PubMed  Google Scholar 

  100. Ravelli GP, Stein ZA, Susser MW (1976) Obesity in young men after famine exposure in utero and early infancy. N Engl J Med 295:349–353

    CAS  PubMed  Google Scholar 

  101. Milagro FI, Campión J, García-Díaz DF et al (2009) High fat diet-induced obesity modifies the methylation pattern of leptin promoter in rats. J Physiol Biochem 65:1–9

    CAS  PubMed  Google Scholar 

  102. Ross SA (2003) Diet and DNA methylation interactions in cancer prevention. Ann N Y Acad Sci 983:197–207

    CAS  PubMed  Google Scholar 

  103. Szarc velSK, Ndlovu MN, Haegeman G, Vanden Berghe W (2010) Nature or nurture: let food be your epigenetic medicine in chronic inflammatory disorders. Biochem Pharmacol 80:1816–1832

    Google Scholar 

  104. Wallwork JC, Duerre JA (1985) Effect of zinc deficiency on methionine metabolism, methylation reactions and protein synthesis in isolated perfused rat liver. J Nutr 115:252–262

    CAS  PubMed  Google Scholar 

  105. Franks PW, Ling C (2010) Epigenetics and obesity: the devil is in the details. BMC Med 8:88

    CAS  PubMed Central  PubMed  Google Scholar 

  106. Link A, Balaguer F, Goel A (2010) Cancer chemoprevention by dietary polyphenols: promising role for epigenetics. Biochem Pharmacol 80:1771–1792

    CAS  PubMed Central  PubMed  Google Scholar 

  107. Steliou K, Boosalis MS, Perrine SP et al (2012) Butyrate histone deacetylase inhibitors. Biores Open Access 1:192–198

    CAS  PubMed Central  PubMed  Google Scholar 

  108. Lin C, Kang J, Zheng R (2005) Oxidative stress is involved in inhibition of copper on histone acetylation in cells. Chem Biol Interact 151:167–176

    CAS  PubMed  Google Scholar 

  109. Choi K-C, Jung MG, Lee Y-H et al (2009) Epigallocatechin-3-gallate, a histone acetyltransferase inhibitor, inhibits EBV-induced B lymphocyte transformation via suppression of RelA acetylation. Cancer Res 69:583–592

    CAS  PubMed  Google Scholar 

  110. Mathers JC, Strathdee G, Relton CL (2010) Induction of epigenetic alterations by dietary and other environmental factors. Adv Genet 71:3–39

    PubMed  Google Scholar 

  111. Parasramka MA, Ho E, Williams DE, Dashwood RH (2012) MicroRNAs, diet, and cancer: new mechanistic insights on the epigenetic actions of phytochemicals. Mol Carcinog 51:213–230

    CAS  PubMed Central  PubMed  Google Scholar 

  112. Kong A-NT, Zhang C, Su Z-Y (2013) Targeting epigenetics for cancer prevention by dietary cancer preventive compounds-the case of miRNA. Cancer Prev Res (Phila) 6:622–624

    CAS  Google Scholar 

  113. Phillips CM (2013) Nutrigenetics and metabolic disease: current status and implications for personalised nutrition. Nutrients 5:32–57

    CAS  PubMed Central  PubMed  Google Scholar 

  114. Neeha VS, Kinth P (2013) Nutrigenomics research: a review. J Food Sci Technol 50:415–428

    CAS  PubMed Central  PubMed  Google Scholar 

  115. Barnes S (2008) Nutritional genomics, polyphenols, diets, and their impact on dietetics. J Am Diet Assoc 108:1888–1895

    CAS  PubMed Central  PubMed  Google Scholar 

  116. Amandio V (2012) Nutriepigenetics and related topics: from cell mechanisms to possible therapeutic relevance. Cell Biol: Res Ther 1:2

    Google Scholar 

  117. Abete I, Navas-Carretero S, Marti A, Martinez JA (2012) Nutrigenetics and nutrigenomics of caloric restriction. Prog Mol Biol Transl Sci 108:323–346

    CAS  PubMed  Google Scholar 

  118. Kouzarides T (2007) Chromatin modifications and their function. Cell 128:693–705

    CAS  PubMed  Google Scholar 

  119. Ferguson LR, Karunasinghe N, Philpott M (2004) Epigenetic events and protection from colon cancer in New Zealand. Environ Mol Mutagen 44:36–43

    CAS  PubMed  Google Scholar 

  120. Yun J-M, Jialal I, Devaraj S (2010) Effects of epigallocatechin gallate on regulatory T cell number and function in obese v. lean volunteers. Br J Nutr 103:1771–1777

    CAS  PubMed  Google Scholar 

  121. Choi K-M, Lee Y-S, Kim W et al (2014) Sulforaphane attenuates obesity by inhibiting adipogenesis and activating the AMPK pathway in obese mice. J Nutr Biochem 25:201–207

    PubMed  Google Scholar 

  122. Baek S-H, Chung H-J, Lee H-K et al (2014) Treatment of obesity with the resveratrol-enriched rice DJ-526. Sci Rep 4:3879

    PubMed Central  PubMed  Google Scholar 

  123. Martin SL, Hardy TM, Tollefsbol TO (2013) Medicinal chemistry of the epigenetic diet and caloric restriction. Curr Med Chem 20:4050–4059

    CAS  PubMed Central  PubMed  Google Scholar 

  124. Howard TD, Ho S-M, Zhang L et al (2011) Epigenetic changes with dietary soy in cynomolgus monkeys. PLoS One 6:e26791

    CAS  PubMed Central  PubMed  Google Scholar 

  125. Li Y, Chen H, Hardy TM, Tollefsbol TO (2013) Epigenetic regulation of multiple tumor-related genes leads to suppression of breast tumorigenesis by dietary genistein. PLoS ONE 8:e54369

    CAS  PubMed Central  PubMed  Google Scholar 

  126. Eichten SR, Briskine R, Song J et al (2013) Epigenetic and genetic influences on DNA methylation variation in maize populations. Plant Cell 25:2783–2797

    CAS  PubMed Central  PubMed  Google Scholar 

  127. Friso S, Choi S-W (2002) Gene-nutrient interactions and DNA methylation. J Nutr 132:2382S–2387S

    CAS  PubMed  Google Scholar 

  128. Friso S, Choi S-W, Girelli D et al (2002) A common mutation in the 5,10-methylenetetrahydrofolate reductase gene affects genomic DNA methylation through an interaction with folate status. Proc Natl Acad Sci U S A 99:5606–5611

    CAS  PubMed Central  PubMed  Google Scholar 

  129. Stern LL, Mason JB, Selhub J, Choi SW (2000) Genomic DNA hypomethylation, a characteristic of most cancers, is present in peripheral leukocytes of individuals who are homozygous for the C677T polymorphism in the methylenetetrahydrofolate reductase gene. Cancer Epidemiol Biomarkers Prev 9:849–853

    CAS  PubMed  Google Scholar 

  130. Weismann A (2006) Essays upon heredity and kindred biological problems, vol 2. p 240

    Google Scholar 

  131. Zaidi SK, Young DW, Montecino M et al (2010) Architectural epigenetics: mitotic retention of mammalian transcriptional regulatory information. Mol Cell Biol 30:4758–4766

    CAS  PubMed Central  PubMed  Google Scholar 

  132. Stepanow S, Reichwald K, Huse K et al (2011) Allele-specific, age-dependent and BMI-associated DNA methylation of human MCHR1. PLoS ONE 6(5):e17711

    CAS  PubMed Central  PubMed  Google Scholar 

  133. Milagro FI, Gómez-Abellán P, Campión J, Martínez JA, Ordovás JM, Garaulet M (2012) CLOCK, PER2 and BMAL1 DNA methylation: association with obesity and metabolic syndrome characteristics and monounsaturated fat intake. Chronobiol Int 29(9):1180–1194

    CAS  PubMed  Google Scholar 

  134. Liu X, Chen Q, Tsai HJ et al (2014) Maternal preconception body mass index and offspring cord blood DNA methylation: exploration of early life origins of disease. Environ Mol Mutagen 55(3):223–230

    CAS  PubMed  Google Scholar 

  135. Nardelli C, Iaffaldano L, Ferrigno M et al (2014) Characterization and predicted role of the microRNA expression profile in amnion from obese pregnant women. Int J Obes (Lond) 38(3):466–469

    CAS  Google Scholar 

  136. Moleres A, Campión J, Milagro FI et al (2013) Differential DNA methylation patterns between high and low responders to a weight loss intervention in overweight or obese adolescents: the EVASYON study. FASEB J 27(6):2504–2512

    CAS  PubMed  Google Scholar 

  137. Sinclair KD, Allegrucci C, Singh R et al (2007) DNA methylation, insulin resistance, and blood pressure in offspring determined by maternal periconceptional B vitamin and methionine status. Proc Natl Acad Sci U S A 104(49):19351–19356

    CAS  PubMed Central  PubMed  Google Scholar 

  138. Cordero P, Campion J, Milagro FI, Martinez J (2013) Transcriptomic and epigenetic changes in early liver steatosis associated to obesity: effect of dietary methyl donor supplementation. Mol Genet Metab 110(3):388–395

    CAS  PubMed  Google Scholar 

  139. Cho CE (2014) Role of methyl group vitamins in hypothalamic development of food intake regulation in Wistar rats. Appl Physiol Nutr Metab 39(7):844

    CAS  PubMed  Google Scholar 

  140. Feng Y, Zhao LZ, Hong L, Shan C, Shi W, Cai W (2013) Alteration in methylation pattern of GATA-4 promoter region in vitamin A-deficient offspring’s heart. J Nutr Biochem 24(7):1373–1380

    CAS  PubMed  Google Scholar 

  141. Lomba A, Martínez JA, García-Díaz DF, Paternain L, Marti A, Campión J, Milagro FI (2010) Weight gain induced by an isocaloric pair-fed high fat diet: a nutriepigenetic study on FASN and NDUFB6 gene promoters. Mol Genet Metab 101(2–3):273–278

    CAS  PubMed  Google Scholar 

  142. Remely M, Aumueller E, Merold C, Dworzak S, Hippe B, Zanner J, Pointner A (2014) Effects of short chain fatty acid producing bacteria on epigenetic regulation of FFAR3 in type 2 diabetes and obesity. Gene 537(1):85–92

    CAS  PubMed  Google Scholar 

  143. Jou MY, Philipps AF, Lönnerdal B (2010) Maternal zinc deficiency in rats affects growth and glucose metabolism in the offspring by inducing insulin resistance postnatally. J Nutr 140(9):1621–1627

    CAS  PubMed  Google Scholar 

  144. Padmavathi IJ, Rao KR, Venu L, Ganeshan M, Kumar KA, Rao ChN, Harishankar N, Ismail A, Raghunath M (2010) Chronic maternal dietary chromium restriction modulates visceral adiposity: probable underlying mechanisms. Diabetes 59(1):98–104

    CAS  PubMed Central  PubMed  Google Scholar 

  145. Venu L, Padmavathi IJ, Kishore YD, Bhanu NV, Rao KR, Sainath PB, Ganeshan M, Raghunath M (2008) Long-term effects of maternal magnesium restriction on adiposity and insulin resistance in rat pups. Obesity (Silver Spring) 16(6):1270–1276

    CAS  Google Scholar 

  146. Boqué N, de la Iglesia R, de la Garza AL et al (2013) Prevention of diet-induced obesity by apple polyphenols in Wistar rats through regulation of adipocyte gene expression and DNA methylation patterns. Mol Nutr Food Res 57(8):1473–1478

    PubMed  Google Scholar 

  147. Dolinoy DC1, Weidman JR, Waterland RA, Jirtle RL (2006) Maternal genistein alters coat color and protects Avy mouse offspring from obesity by modifying the fetal epigenome. Environ Health Perspect 114(4):567–572

    CAS  PubMed Central  PubMed  Google Scholar 

  148. Nagao K, Jinnouchi T, Kai S, Yanagita T (2013) Effect of dietary resveratrol on the metabolic profile of nutrients in obese OLETF rats. Lipids Health Dis 12:8

    CAS  PubMed Central  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David Albuquerque .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Albuquerque, D., Manco, L., Nóbrega, C. (2014). Epigenetics of Human Obesity: A Link Between Genetics and Nutrition. In: Nóbrega, C., Rodriguez-López, R. (eds) Molecular Mechanisms Underpinning the Development of Obesity. Springer, Cham. https://doi.org/10.1007/978-3-319-12766-8_8

Download citation

Publish with us

Policies and ethics