Syntax-Directed Divide-and-Conquer Data-Flow Analysis

  • Shigeyuki Sato
  • Akimasa Morihata
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8858)

Abstract

Link-time optimization, with which GCC and LLVM are equipped, generally deals with large-scale procedures because of aggressive procedure inlining. Data-flow analysis (DFA), which is an essential computation for compiler optimization, is therefore desired to deal with large-scale procedures. One promising approach to the DFA of large-scale procedures is divide-and-conquer parallelization. However, DFA on control-flow graphs is difficult to divide and conquer. If we perform DFA on abstract syntax trees (ASTs) in a syntax-directed manner, the divide and conquer of DFA becomes straightforward, owing to the recursive structure of ASTs, but then nonstructural control flow such as goto/label becomes a problem. In order to resolve it, we have developed a novel syntax-directed method of DFA on ASTs that can deal with goto/label and is ready to divide-and-conquer parallelization. We tested the feasibility of our method experimentally through prototype implementations and observed that our prototype achieved a significant speedup.

Keywords

syntax-directed divide and conquer closed semiring 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Albarghouthi, A., Kumar, R., Nori, A.V., Rajamani, S.K.: Parallelizing Top-Down Interprocedural Analyses. In: Proc. PLDI 2012, pp. 217–228 (2012)Google Scholar
  2. 2.
    Allen, F.E., Cocke, J.: A Program Data Flow Analysis Procedure. Commun. ACM 19(3), 137–147 (1976)CrossRefMATHGoogle Scholar
  3. 3.
    Khedker, U.P., Dhamdhere, D.M.: A Generalized Theory of Bit Vector Data Flow Analysis. ACM Trans. Program. Lang. Syst. 16(5), 1472–1511 (1994)CrossRefGoogle Scholar
  4. 4.
    Kildall, G.A.: A Unified Approach to Global Program Optimization. In: Proc. POPL 1973, pp. 194–206 (1973)Google Scholar
  5. 5.
    Kramer, R., Gupta, R., Soffa, M.L.: The Combining DAG: A Technique for Parallel Data Flow Analysis. IEEE T. Parall Distr. 5(8), 805–813 (1994)CrossRefGoogle Scholar
  6. 6.
    Lee, Y.F., Ryder, B.G., Fiuczynski, M.E.: Region Analysis: A Parallel Elimination Method for Data Flow Analysis. IEEE Software Eng. 21(11), 913–926 (1995)CrossRefGoogle Scholar
  7. 7.
    Marlowe, T.J., Ryder, B.G.: Properties of data flow frameworks. Acta Inform. 28(2), 121–163 (1990)MathSciNetCrossRefMATHGoogle Scholar
  8. 8.
    Méndez-Lojo, M., Burtscher, M., Pingali, K.: A GPU Implementation of Inclusion-based Points-to Analysis. In: Proc. PPoPP 2012, pp. 107–116 (2012)Google Scholar
  9. 9.
    Méndez-Lojo, M., Mathew, A., Pingali, K.: Parallel Inclusion-based Points-to Analysis. In: Proc. OOPSLA 2010, pp. 428–443 (2010)Google Scholar
  10. 10.
    Mintz, R.J., Fisher, G.A., Sharir, M.: The design of a global optimizer. In: Proc. SIGPLAN Symposium on Compiler Construction 1979, pp. 226–234 (1979)Google Scholar
  11. 11.
    Prabhu, T., Ramalingam, S., Might, M., Hall, M.: EigenCFA: Accelerating Flow Analysis with GPUs. In: Proc. POPL 2011, pp. 511–522 (2011)Google Scholar
  12. 12.
    Rodriguez, J., Lhoták, O.: Actor-Based Parallel Dataflow Analysis. In: Knoop, J. (ed.) CC 2011. LNCS, vol. 6601, pp. 179–197. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  13. 13.
    Rosen, B.K.: High-Level Data Flow Analysis. Commun. ACM 20(10), 712–724 (1977)CrossRefMATHGoogle Scholar
  14. 14.
    Rosen, B.K.: Monoids for Rapid Data Flow Analysis. SIAM J. Comput. 9(1), 159–196 (1980)MathSciNetCrossRefMATHGoogle Scholar
  15. 15.
    Ryder, B.G., Paull, M.C.: Elimination Algorithms for Data Flow Analysis. ACM Comput. Surv. 18(3), 277–316 (1986)CrossRefGoogle Scholar
  16. 16.
    Sharir, M., Pnueli, A.: Two Approaches to Inter-Procedural Data-Flow Analysis. Prentice-Hall (1981)Google Scholar
  17. 17.
    Tarjan, R.E.: A Unified Approach to Path Problems. J. ACM 28(3), 577–593 (1981)MathSciNetCrossRefMATHGoogle Scholar
  18. 18.
    Tarjan, R.E.: Fast Algorithms for Solving Path Problems. J. ACM 28(3), 594–614 (1981)MathSciNetCrossRefMATHGoogle Scholar
  19. 19.
    Vaivaswatha, N., Govindarajan, R.: Parallel Flow-Sensitive Pointer Analysis by Graph-Rewriting. In: Proc. PACT 2013, pp. 19–28 (2013)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Shigeyuki Sato
    • 1
  • Akimasa Morihata
    • 2
  1. 1.The University of Electro-CommunicationsJapan
  2. 2.Graduate School of Arts and SciencesUniversity of TokyoJapan

Personalised recommendations