Skip to main content

Basic and Clinical Aspects of Photodynamic Therapy

  • Chapter
  • First Online:

Part of the book series: Resistance to Targeted Anti-Cancer Therapeutics ((RTACT,volume 5))

Abstract

Photodynamic therapy (PDT) was originally developed for the treatment of solid tumors by the concerted action of a tumor-localizing agent, named as the photosensitizer, molecular oxygen and visible light source. The photoinduced cytotxic species are mainly represented by singlet oxygen (1O2), even though the formation of NO has been observed in selected situations. Optimal results are generally obtained by using porphyrins and their tetrapyrrolic analogues as the photodynamic agents, since these compounds display an intense absorbance of the red spectra wavelengths, which are endowed with a particularly deep penetration into most biological tissues. While several porphyrins exhibit an intrinsic preferential affinity for malignant tissues, the selectivity of the tumor localization can be significantly enhanced by pre-binding the photosensitizer with a targeting agent, such as an antibody or a vehicle (e.g., glycoproteins, peptides, oligonucleotide aptamers, growth factors, lipoproteins) directed against antigens or receptors which are specifically present at the surface of tumor cells. Recently, novel perspectives have been opened by the association of the photosensitizer with nanoparticles, which can be made to be multifunctional, thereby allowing the simultaneous delivery of photoactivatable moieties acting by different mechanisms, as well as of phototherapeutic and photodiagnostic agents. The chemical structure of the photosensitizer and the nature of the possible carrier have important consequences with regards to the distribution of the photosensitizer among different compartments of the tumor tissue, such as neoplastic cells, blood vessels or the non-vascular stroma, as well as its localization in different subcellular sites; these would obviously affect the mechanism of photoinduced tumor damage, modulating the competition between necrosis, apoptosis and autophagia, the importance of photoinduced hypoxia, and the balance between enhancement of the immune response and immunosuppression. So far, about 250 randomized clinical trials have been officially reported for PDT of tumors, and essentially all types of solid tumors with the exception of melanotic melanoma have been found to be positively responsive to the photodynamic treatment. Thus, PDT is currently considered as a reasonable option for the treatment of a variety of malignant lesions for curative or palliative purposes by using either external or endoscopic irradiation approaches via non-coherent or laser light sources.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Agostinis P, Berg K, Cengel KA, Foster TH, Gollnick SO, Hahn SM, Hamblin MR, Juzeniene A, Kessel D, Korbelik M, Moan J, Mroz P, Nowis D, Piette J, Wilson BC, Gola J. Photodynamic therapy of cancer: an overview. CA Cancer J Clin. 2011;61:250–81.

    PubMed Central  PubMed  Google Scholar 

  2. Dolmans DE, Fukumura D, Jain RK. Photodynamic therapy for cancer. Natl Rev Cancer. 2003;3:380–7.

    CAS  Google Scholar 

  3. Jori G. Tumor photosensitisers: approaches to enhance the selectivity and efficiency of photodynamic therapy. J Photochem Photobiol B Biol. 1996;36:87–93.

    Google Scholar 

  4. Jori G, Coppellotti O. Inactivation of pathogenic microorganisms by photodynamic techniques: mechanistic aspects and perspective applications. Anti-Infect Agents Med Chem. 2007;6:119–31.

    Google Scholar 

  5. De Rosa M, Crutchley R. Photosensitised singlet oxygen and its applications. Coord Chem Rev. 2002;233:351–71.

    Google Scholar 

  6. Jori G, Reddi E. Second generation photosensitisers for the photodynamic therapy of tumors. In: Douglas R, Moan J, Ronto G, Editor. Light in biology and medicine. London: Plenum Press; 1999. pp. 253–66.

    Google Scholar 

  7. Ochsner M. Photophysical and photobiological processes in the photodynamic therapy of tumors. J Photochem Photobiol B Biol. 1997;39:1–8.

    Google Scholar 

  8. Reddi E, Ceccon M, Valduga G, Jori G, Bommer JC. Photophysical properties and antibacterial activity of meso-substituted cationic porphyrins. Photochem Photobiol. 2002;75:462–70.

    CAS  PubMed  Google Scholar 

  9. Mroz P, Tegos GP, Gali H, Wharton T, Sarna T, Hamblion MR. Photodynamic therapy with fullerenes. Photochem Photobiol Sci. 2007;6:1139–49.

    PubMed Central  CAS  PubMed  Google Scholar 

  10. Allison RR. Photodynamic therapy: oncologic horizons. Future Oncol. 2014;10:123–4.

    CAS  PubMed  Google Scholar 

  11. Pottier R, Krammer B, Stepp H, Baumgartner R. Photodynamic therapy with ALA: a clinical handbook. Cambridge: Royal Society of Chemistry; 2005.

    Google Scholar 

  12. Bourré L, Giuntini F, Eggleston IM, Mac Robert AJ. 5-Aminolaevulinic acid peptide pro-drugs enhance photosensitisation for photodynamic therapy. Mol Cancer Ther. 2008;7:1720–29.

    PubMed  Google Scholar 

  13. Babilas P, Landthaler M, Szeimies RM. Photodynamic therapy in dermatology. Eur J Dermatol. 2006;16:340–48.

    CAS  PubMed  Google Scholar 

  14. Paula LF, Santos RO, Menezes HD, Britto JR, Vieiram JB, Gomtijo PP, Oliveira AC. A comparative study of irradiation systems for phototherapeutic applications. J Braz Chem Soc. 2009;21:1–7.

    Google Scholar 

  15. Van den Bergh H. On the evolution of some endoscopic light delivery systems for photodynamic therapy. Endoscopy. 2008;40:392–407.

    Google Scholar 

  16. Castano AP, Demidova TN, Hamblin MR. Mechanisms in photodynamic therapy: part two-cellular signaling, cell metabolism and modes of cell death. Photodiagnosis Photodyn Ther. 2005;2:1–23.

    PubMed Central  CAS  PubMed  Google Scholar 

  17. Peng Q, Moan J, Nesland JM. Correlation of subcellular and intratumoral photosensitizer localization with ultrastructural features after photodynamic therapy. Ultrastruct Pathol. 1996;20:109–29.

    CAS  PubMed  Google Scholar 

  18. Castano AP, Demidova TN, Hamblin MR. Mechanisms in photodynamic therapy: part one-photosensitizers, photochemistry and cellular localization. Photodiagnosis Photodyn Ther. 2004;1:279–93.

    PubMed Central  CAS  PubMed  Google Scholar 

  19. Dummin H, Cernay T, Zimmermann HW. Selective photosensitization of mitochondria in Hela cells by cationic Zn(II) phthalocyanines with lipophilic side-chains. J Photochem Photobiol B. 1997;37:219–29.

    CAS  PubMed  Google Scholar 

  20. Rashid F, Horobin RW. Interaction of molecular probes with living cells and tissues. Part 2. A structure-activity analysis of mitochondrial staining by cationic probes, and a discussion of the synergistic nature of image-based and biochemical approach. Histochemistry. 1990;94:303–8.

    CAS  PubMed  Google Scholar 

  21. Kessel D, Luo J, Deng Y, Chang CK. The role of subcellular localization in initiation of apoptosis by photodynamic therapy. Photochem Photobiol. 1997;65:422–6.

    CAS  PubMed  Google Scholar 

  22. Kessel D, Luo Y. Mitochondrial photodamage and PDT-induced apoptosis. J Photochem Photobiol B. 1998;42:89–95.

    CAS  PubMed  Google Scholar 

  23. Dahle J, Steen HB, Moan J. The mode of cell death induced by photodynamic treatment depends on cell density. Photochem Photobiol. 1999;70:363–7.

    CAS  PubMed  Google Scholar 

  24. Granville DJ, Carthy CM, Jiang H, Shore GC, McManus BM, Hunt DW. Rapid cytochrome c release, activation of caspase, 6, 7 and 8 followed by Bap31 cleavage in HeLa cells treated with photodynamic therapy. FEBS Lett. 1998;437:5–10.

    CAS  PubMed  Google Scholar 

  25. Varnes ME, Chiu SM, Xue LY, Oleinick NL. Hotodynamic therapy-induced apoptosis in lymphoma cells: translocation of cytochrome c causes inhibition of respiration as well as caspase activation. Biochem Biophys Res Commun. 1999;255:673–9.

    CAS  PubMed  Google Scholar 

  26. Kessel D, Luo J. Photodynamic therapy: a mitochondrial inducer of apoptosis. Cell Death Differ. 1999;6:28–35.

    CAS  PubMed  Google Scholar 

  27. Thornberry NA, Lazebnik Y. Caspases: enemies within. Science. 1998;281:1312–6.

    CAS  PubMed  Google Scholar 

  28. Nunez G, Benedict MA, Hu Y, Inohara N. Caspases: the proteases of the apoptotic pathway. Oncogene. 1998;17:3237–45.

    PubMed  Google Scholar 

  29. Buytaert E, Dewaele M, Agostinis P. Molecular effectors of multiple cell death pathways initiated by photodynamic therapy. Biochem Biophys Acta. 2007;1776:86–107.

    CAS  PubMed  Google Scholar 

  30. Porter AG, Janicke RU. Emerging roles of caspase-3 in apoptosis. Cell Death Differ. 1999;6:99–104.

    CAS  PubMed  Google Scholar 

  31. Ashkenazi A, Dixit VM. Death receptors: signaling and modulation. Science. 1998;281:1305–08.

    CAS  PubMed  Google Scholar 

  32. Zhuang S, Lynch MC, Kochevar LE. Caspase-8 mediates caspase-3 activation and cytochrome c release during singlet oxygen–induced apoptosis of HL-60 cells. Exp Cell Res. 1999;250:203–12.

    CAS  PubMed  Google Scholar 

  33. Agarwal ML, Larkin HE, Zaidi SI, Mukthar H, Oleinick NL. Phospholipase activation triggers apoptosis in photosensitized mouse lymphoma cells. Cancer Res. 1993;53:5897–902.

    CAS  PubMed  Google Scholar 

  34. Berg K, Moan J. Lysosomes and microtubules as targets for photochemotherapy of cancer. Photochem Photobiol. 1997;65:403–9.

    CAS  PubMed  Google Scholar 

  35. Berg K, Madslien K, Bommeer JC, Oftebro R, Winkelman JW, Moan J. Light induced relocalization of sulfonated meso-tetraphenylporphines in NHIK 3025 cells and effects of dose fractionation. Photochem Photobiol. 1991;53:203–10.

    CAS  PubMed  Google Scholar 

  36. Peng Q, Farrants GW, Madslien K, Bommer JC, Moan J, Danielsen HE, Nesland JM. Subcellular localization, redistribution and photobleaching of sulfonated aluminum phthalocyanines in a human melanoma cell line. Int J Cancer. 1991;49:290–5.

    CAS  PubMed  Google Scholar 

  37. Berg K, Moan J. Lysosomes as photochemical targets. Int J Cancer. 1994;59:814–22.

    CAS  PubMed  Google Scholar 

  38. Reiners JJ Jr, Caruso JA, Matthieu P, Chelladurai B, Yin XM, Kessel D. Release of cytocheome C and activation of pro-caspase-9 following lysosomal photodamage involves bid cleavage. Cell Death Differ. 2012;9:934–44.

    Google Scholar 

  39. Noodt BB, Berg K, Stokke T, Peng Q, Nesland JM. Different apoptotic pathways are induced from various intracellular sites by tetraphenylporphyrins and light. Br J Cancer. 1999;79:72–81.

    PubMed Central  CAS  PubMed  Google Scholar 

  40. MacDonald LJ, Morgan J, Bellnier DA, Paszkiewicz GM, Whitaker JE, Litchfield DJ, Dougherty TJ. Subcellular localization patterns and their relationship to photodynamic activity of pyropheophorbide-a derivatives. Photochem Photobiol. 1999;70:789–97.

    CAS  PubMed  Google Scholar 

  41. Li W, Ma Q, Wu E. Perspectives on the role of photodynamic therapy in the treatment of pancreatic cancer. Int J Photoenergy. 2012;12:1–9.

    Google Scholar 

  42. Kessel D. Relocalization of cationic porphyrins during photodynamic therapy. Photochem Photobiol Sci. 2002;1:837–40.

    CAS  PubMed  Google Scholar 

  43. Nakagawa T, Shimizu S, Watanabe T, Yamaguchi O, Otsu K, Yamagata H, Inohara H, Kubo T, Tsujimoto Y. Cyclophilin D-dependent mitochondrial permeability transition regulates some necrotic but not apoptotic cell death. Nature. 2005;434:652–8.

    CAS  PubMed  Google Scholar 

  44. Buytaert E, Callewaert G, Vandenheede JR, Agostinis P. Deficiency in apoptotic effectors Bax and Bak reveals an autophagic cell death pathway initiated by photodamage to the endoplasmic reticulum. Autophagy. 2006;2:238–40.

    CAS  PubMed  Google Scholar 

  45. Reiners JJ Jr, Agostinis P, Berg K, Oleinick NL, Kessel D. Assessing autophagy in the context of photodynamic therapy. Autophagy. 2010;6:7–18.

    PubMed Central  CAS  PubMed  Google Scholar 

  46. Dewaele M, Maes H, Agostinis P. ROS-mediated mechanisms of autophagy stimulation and their relevance in cancer therapy. Autophagy. 2010;6:838–54.

    CAS  PubMed  Google Scholar 

  47. Castellani A, Pace GP, Concioli M. Photodynamic effect of haematoporphyrin on blood microcirculation. J Pathol Bacteriol. 1963;86:99–102.

    CAS  PubMed  Google Scholar 

  48. Star WM, Marijnissen HP, van den Berg-Blok AE, Versteeg JA, Franken KA, Reinhold HS. Destruction of rat mammary tumor and normal tissue microcirculation by hematoporphyrin derivative photoradiation observed in vivo in sandwich observation chambers. Cancer Res. 1986;46:2532–40.

    CAS  PubMed  Google Scholar 

  49. Debefve E, Mithieux F, Perentes JY, Wang Y, Cheng C, Schaefer SC, Ruffieux C, Ballini JP, Gonzales M, van den Bergh H, Ris HB, Lehr HA, Krueger T. Leukocyte-endothelial cell interaction is necessary for photodynamic therapy induced vascular permeabilization. Lasers Surg Med. 2011;43:696–704.

    PubMed  Google Scholar 

  50. Betz CS, Rauschning W, Stranadko EP, Riabov MV, Volgin VN, Albrecht V, Nifantiev NE, Hopper C. Long-term outcomes following Foscan [registered]-PDT of basal cell carcinomas. Lasers Surg Med. 2012;44:533–40.

    PubMed  Google Scholar 

  51. Hasan T. Using cellular mechanisms to develop effective combinations of photodynamic therapy and targeted therapies. J Natl Compr Canc Netw. 2012;10(Suppl 2):S23–6.

    Google Scholar 

  52. Sattler UG, Mueller-Klieser W. The anti-oxidant capacity of tumor glycolysis. Int J Radiat Biol. 2009;85:963–71.

    CAS  PubMed  Google Scholar 

  53. Frank J, Flaccs A, Schwarz C, Lambert C, Biealski HK. Ascorbic acid suppresses cell death in rat DS-sarcoma cancer cells induced by 5-aminolevulinic acid-based photodynamic therapy. Free Radic Biol Med. 2006;40:827–36.

    CAS  PubMed  Google Scholar 

  54. Golab J, Nowis D, Skrzycki M, Czeczot H, Baranczyk-Kuzma A, Wilczynski GM, Makowski M, Mroz P, Kozar K, Kaminski R, Jalili A, Kopec M, Grzela T, Jakobisiak M. Antitumor effects of photodynamic are potentiated by 2-methoxyestradiol. A superoxide dismutase inhibitor. J Biol Chem. 2003;278:407–14.

    PubMed  Google Scholar 

  55. Chu ZL, McKinsey TA, Liu L, Gentry JJ, Malim MH, Ballard DW. Suppression of tumor necrosis factor-induced cell death by inhibitor of apoptosis c-IAP2 is under NF-kappa B control. Proc Natl Acad Sci U S A. 1997;94:10057–62.

    PubMed Central  CAS  PubMed  Google Scholar 

  56. Kasibhatla S, Genestier L, Green DR. Regulation of fas-ligand expression during activation-induced cell death in T lymphocytes via nuclear factor kappaB. J Biol Chem. 1999;274:987–92.

    CAS  PubMed  Google Scholar 

  57. Matroule JY, Bonizzi G, Morliere P, Paillous N, Santus R, Bours V, Piette J. Pyropheophorbide-a methyl ester-mediated photosensitization activates transcription factor NF-kappaB through the interleukin-1 receptor-dependent signaling pathway. J Biol Chem. 1999;274:2988–3000.

    CAS  PubMed  Google Scholar 

  58. Rapozzi V, Umezawa K, Xodo LE. Role of NF-κB/Snail/RKIP loop in the response of tumor cells to photodynamic therapy. Lasers Surg Med. 2011;43:575–85.

    PubMed  Google Scholar 

  59. Almeida RD, Manadas BJ, Carvalho AP, Duarte CB. Intracellular signaling mechanisms in photodynamic therapy. Biochim Biophys Acta. 2004;1704:59–86.

    CAS  PubMed  Google Scholar 

  60. Ferrario A, von Tiehl KF, Rucker N, Schwarz MA, Gill PS, Gomer CJ. Anti-angiogenic treatment enhances photodynamic therapy responsiveness in a mouse mammary carcinoma. Cancer Res. 2000;60:4066–9.

    CAS  PubMed  Google Scholar 

  61. Kocanova S, Buytaert E, Matroule JY, Piette J, Golab J, de Witte P, Agostinis P. Induction of heme-oxygenase 1 requires the p38MAPK and PI3K pathways and suppresses apoptotic cell death following hypericin-mediated photodynamic therapy. Apoptosis. 2007;12:731–41.

    CAS  PubMed  Google Scholar 

  62. Xue LY, He J, Oleinik NL. Rapid tyrosine phosphorylation of HIS in the response of mouse lymphoma L5178Y-R cells to photodynamic treatment sensitized by the phthalocyanine Pc 4. Photochem Photobiol. 1997;66:105–13.

    CAS  PubMed  Google Scholar 

  63. Gomer CJ, RyterSW, Ferrario A, Rucker N, Wong S, Fisher AM. Photodynamic therapy-mediated oxidative stress can induce expression of heat shock proteins. Cancer Res. 1996;56:2355–60.

    CAS  PubMed  Google Scholar 

  64. Liu H, Bowes RC 3rd, van de Water B, Sillence C, Nagelkerke JF, Stevens JL. Endoplasmic reticulum chaperones GRP78 and calreticulin prevent oxidative stress, Ca2+ disturbances, and cell death in renal epithelial cells. J Biol Chem. 1997;272:21751–9.

    CAS  PubMed  Google Scholar 

  65. Assefa Z, Vantieghem A, Declercq W, Vandenabeele P, Vandenheede JR, Merlevede W, de Witte P, Agostinis P. The activation of the c-Jun N-terminal kinase and p38 mitofen-activated protein kinase signaling pathways protects HeLa cells from apoptosis following photodynamic therapy with hypericin. J Biol Chem. 1999;274:8788–96.

    CAS  PubMed  Google Scholar 

  66. Tao J, Sanghera JS, Pelech SL, Wong G, Levy JG. Stimulation of stress-activated protein kinase and p38 HOG1 kinase in murine keratinocytes following photodynamic therapy with benzoporphyrin derivative. J Biol Chem. 1996;271:27107–15.

    CAS  PubMed  Google Scholar 

  67. Klotz LO, Fritsch C, Briviba K, Tsacmmacidis N, Schliess F, Sies H. Activation of JNK and p38 but not ERK MAP kinases in human skin cells by 5-aminolevulinate-photodynamic therapy. Cancer Res. 1998;58:4297–300.

    CAS  PubMed  Google Scholar 

  68. Klotz LO, Pellieux C, Briviba K, Pierlot C, Aubry JM, Sies H. Mitogen-activated protein kinase (p38-, JNK-, ERK-) activation pattern induced by extracellular and intracellular singlet oxygen and UVA. Eur J Biochem. 1999;260:917–22.

    CAS  PubMed  Google Scholar 

  69. Xue L, He J, Oleinick NL. Promotion of photodynamic therapy-induced apoptosis by stress kinases. Cell Death Differ. 1999;6:855–64.

    CAS  PubMed  Google Scholar 

  70. Briviba K, Klotz LO, Sies H. Toxic and signaling effects of photochemically or chemically generated singlet oxygen in biological systems. Biol Chem. 1997;378:1259–65.

    CAS  PubMed  Google Scholar 

  71. Albini A, Tosetti F, Benelli R, Noonan DM. Tumor inflammatory angiogenesis and its chemoprevention. Cancer Res. 2005;65:10637–41.

    CAS  PubMed  Google Scholar 

  72. Karin M. Cancer research in flames; tracking inflammation’s role in promoting malignancy could lead to better treatments. Scientist. 2005;19:24–5.

    Google Scholar 

  73. Benelli R, Morini M, Carrozzino F, Ferrari N, Minghelli S, Santi L, Cassatella M, Noonan DM, Albini A. Neuthrophils as a key cellular target for angiostatin: implications for regulation of angiogenesis and inflammation. FASEB J. 2002;16:267–9.

    CAS  PubMed  Google Scholar 

  74. Gomer CJ, Ferrario A, Luna M, Rucker N, Wong S. Photodynamic therapy: combined modality approaches targeting the tumor microenvironment. Lasers Surg Med. 2006;38:516–21.

    PubMed  Google Scholar 

  75. Korbelik M, Parkins CS, Shibuya H, Cecic I, Stratford MR, Chaplin DJ. Nitric oxide production by tumor tissue: impact on the response to photodynamic therapy. Br J Cancer. 2000;82:1835–43.

    PubMed Central  CAS  PubMed  Google Scholar 

  76. Reeves KJ, Reed MW, Brown NJ. Is nitric oxide important in photodynamic therapy? J Photochem Photobiol B. 2009;95:141–7.

    CAS  PubMed  Google Scholar 

  77. Gupta S, Ahmad N, Mukhtar H. Involvment of nitric oxide during phthalocyanine (Pc4) photodynamic therapy-mediated apoptosis. Cancer Res. 1998;58:1785–8.

    CAS  PubMed  Google Scholar 

  78. Gomes ER, Almeida RD, Carvalho AP, Duarte CB. Nitric oxide modulates tumor cell death induced by photodynamic therapy through a cGMP-dependent mechanism. Photochem Photobiol. 2002;76:423–30.

    CAS  PubMed  Google Scholar 

  79. Bhowmick R, Girotti AW. Cytoprotective signaling associated with nitric oxide upregulation in tumor cells subjected to photodynamic therapy-like oxidative stress. Free Radic Biol Med. 2013;57:39–48.

    PubMed Central  CAS  PubMed  Google Scholar 

  80. Rapozzi V, Della Pietra E, Zorzet S, Zacchigna M, Bonavida B, Xodo LE. Nitric oxide-mediated activity in anti-cancer photodynamic therapy. Nitric Oxide. 2013;30:26–35.

    CAS  PubMed  Google Scholar 

  81. Bhowmick R, Girotti AW. Pro-survival and pro-growth effects of stress-induced nitric oxide in a prostate cancer photodynamic therapy model. Cancer Lett. 2014;343:115–22.

    CAS  PubMed  Google Scholar 

  82. Bhowmick R, Girotti AW. Signaling events in apoptotic photokilling of 5-aminolevulinic acid-treated tumor cells: inhibitory effects of nitric oxide. Free Radic Biol Med. 2009;47:731–40.

    PubMed Central  CAS  PubMed  Google Scholar 

  83. Hanlon JG, Adams K, Rainbow AJ, Gupta RS, Singh G. Induction of Hsp60 by photofrin-mediated photodynamic therapy. J Photochem Photobiol B. 2001;64:55–61.

    CAS  PubMed  Google Scholar 

  84. Nonaka M, Ikeda H, Inokuchi T. Inibitory effect of heat shock protein 70 on apoptosis induced by photodynamic therapy in vitro. Photochem Photobiol. 2004;79:94–8.

    CAS  PubMed  Google Scholar 

  85. Suschek CV, Krischel V, Bruch-Gerharz D, Berendji D, Krutmann J, Kröncke KD, Kolb-Bachofen V. Nitric oxide fully protects against UVA-induced apoptosis in tight correlation with Bcl-2 up-regulation. J Biol Chem. 1999;274:6130–7.

    CAS  PubMed  Google Scholar 

  86. Ahmad N, Feyes DK, Agarwal R, Mukhtar H. Photodynamic therapy results in induction of WAF1/CIP1/P21 leading to cell cycle arrest and apoptosis. Proc Natl Acad Sci U S A. 1998:95:6977–82.

    Google Scholar 

  87. Ishida A, Sasaguri T, Kosaka C, Nojima H, Ogata J. Induction of the cyclin-dependent kinase inhibitor p21(Sdi/Cip1/Waf1) by nitric oxide-generating vasodilatator in vascular smooth muscle cells. J Biol Chem. 1997;272:10050–7.

    CAS  PubMed  Google Scholar 

  88. Ho YS, Wang YJ, Lin JK. Induction of p53 and p21/WAF1/CIP1 expression by nitric oxide and their association with apoptosis in human cancer cells. Mol Carcinog. 1996;16:20–31.

    CAS  PubMed  Google Scholar 

  89. Zhou J, Brüne B. NO and transcriptional regulation: from signaling to death. Toxicology. 2005;208:223–33.

    CAS  PubMed  Google Scholar 

  90. Milla Sanabria L Rodriguez ME Cogno IS Rumie Vittar NB Pansa MF Lamberti MJ Rivarola VA. Direct and indirect photodynamic therapy effects on the cellular and molecular components of the tumor microenvironment. Biochim Biophys Acta. 2013;1835:36–45.

    CAS  PubMed  Google Scholar 

  91. Bonavida B, Baritaki S. Dual role of NO donors in the reversal of tumor cell resi stance and EMT: downregulation of the NF-kB/Snail/YY1/RKIP circuitry. Nitric Oxide. 2011;24:1–7.

    CAS  PubMed  Google Scholar 

  92. Korbelik M. Induction of tumor immunity by photodynamic therapy. J Clin Laser Med Surg. 1996;14:329–34.

    CAS  PubMed  Google Scholar 

  93. Van Duijnhoven FH Aalbers RI Rovers JP Terpstra OT Kuppen PJ. The immunological consequences of photodynamic treatment of cancer, a literature review. Immunobiology. 2003;207:105–13.

    PubMed  Google Scholar 

  94. Canti G., De Simone A, Korbelik M. Photodynamic therapy and immune system in experimental oncology. Photochem Photobiol Sci. 2002;1:79–80.

    CAS  PubMed  Google Scholar 

  95. Dougherty TJ, Gomer CJ, Henderson BW, Jori G, Kessel D, Korbelik M, Moan J, Peng Q. Photodynamic therapy. J Natl Cancer Inst. 1998;90:889–905.

    CAS  PubMed  Google Scholar 

  96. Korbelik M. PDT-associated host response and its role in the therapy outcome. Lasers Surg Med. 2006;38:500–8.

    PubMed  Google Scholar 

  97. Sun J, Cecic I, Parkins CS, Korbelik M. Neutrophils as inflammatory and immune effectors in photodynamic therapy-treated mouse SCCVII tumors. Photochem Photobiol Sci. 2002;1:690–5.

    CAS  PubMed  Google Scholar 

  98. Gollnick SO, Evans SS, Baumann H, Owczarczak B, Maier P, Vaughan L, Wang WC, Unger E, Henderson BW. Role of cytokines in photodynamic therapy-induced local and systemic inflammation. Br J Cancer. 2003;88:1772–9.

    PubMed Central  CAS  PubMed  Google Scholar 

  99. Kousis PC, Henderson BW, Maier PG, Gollnick SO. Photodynamic therapy enhancement of antitumor immunity is regulated by neutrophils. Cancer Res. 2007;67:10501–10.

    PubMed Central  CAS  PubMed  Google Scholar 

  100. Hunt DW, Levy JG. Immunomodulatory aspects of photodynamic therapy. Expert Opin Investig Drugs. 1998;7:57–64.

    CAS  PubMed  Google Scholar 

  101. Korbelik M, Cecic I. Contribution of myeloid and lymphoid host cells to the curative outcome of mouse sarcoma treatment by photodynamic therapy. Cancer Lett. 1999;137:91–8.

    CAS  PubMed  Google Scholar 

  102. Abdel-Hady ES, Martin-Hirtsch P, Duggan-Keen M, Duggan-Keen M, Stern PL, Moore JV, Corbitt G, Kitchener HC, Hampson IN. Immunological and viral factors associated with the response of vulval intraepithelial neoplasia to photodynamic therapy. Cancer Res. 2011;61:192–6.

    Google Scholar 

  103. Henderson BW, Gollnick SO. Mechanistic principles of photodynamic therapy. In: Vo-Dinh T, Editor. Biomedical photonics handbook. Boca Raton: CRC Press; 2003. pp. 31–27.

    Google Scholar 

  104. Henderson BW, Gollnick SO, Snyder JW, Busch TM, Kousis PC, Cheney RT, Morgan J. Choice of oxygen-conserving treatment regimen determines the inflammatory response and outcome of photodynamic therapy of tumors. Cancer Res. 2004;64:2120–6.

    CAS  PubMed  Google Scholar 

  105. Reis E, Sousa C. Activation of dendritic cells: translating innate into adaptive immunity. Curr Opin Immunol. 2004;16:21–5.

    Google Scholar 

  106. Sur BW, Nguyen P, Sun CH, Tromberg BJ, Nelson EL. Immunotherapy using PDT combined with rapid intratumoral dendritic cell injection. Photochem Photobiol. 2008;84:1257–64.

    PubMed Central  CAS  PubMed  Google Scholar 

  107. Paszko E, Ehrhardt C, Senge MO, Keller DT, Reynolds JV. Nanodrug applications in photodynamic therapy. Photodiagnosis Photodyn Ther. 2011;8:14–29.

    CAS  PubMed  Google Scholar 

  108. Maeda H, Matsumura Y. EPR effect based drug design and clinical outlook for enhanced cancer chemotherapy. Adv Drug Deliv Rev. 2011;63:129–30.

    CAS  PubMed  Google Scholar 

  109. Chatterjee DK, Fong LS, Zhang Y. Nanoparticles in photodynamic therapy: an emerging paradigm. Adv Drug Deliv Rev. 2008;60:1627–37.

    CAS  PubMed  Google Scholar 

  110. Kozlowska D, Foran P, MacMahon P, Shelly MJ, Eustace S, O’Kennedy R. Molecular and magnetic resonance imaging: the value of immunoliposomes. Adv Drug Deliv Rev. 2009;61:1402–11.

    CAS  PubMed  Google Scholar 

  111. Torchilin VP. Targeted pharmaceutical nanocarriers for cancer therapy and imaging. AAPS J. 2007;9:E128–47.

    PubMed Central  CAS  PubMed  Google Scholar 

  112. Chen B, Pogue WB, Hasan T. Liposomal delivery of photosensitizing agents. Expert Opin Drug Deliver. 2005;2:477–87.

    CAS  Google Scholar 

  113. Derycke AS, de Witte PA. Liposomes for photodynamic therapy. Adv Drug Deliv Rev. 2004;56:17–30.

    CAS  PubMed  Google Scholar 

  114. Li B, Moriyama EH, Li F, Jarvi MT, Allen C, Wilson BC. Diblock copolymer micelles deliver hydrophobic protoporphyrin IX for photodynamic therapy. Photochem Photobiol. 2007;83:1505–12.

    CAS  PubMed  Google Scholar 

  115. Van Nostrum CF. Polymeric micelles to deliver photosensitizers for photodynamic therapy. Adv Drug Deliv Rev. 2004;56:9–16.

    PubMed  Google Scholar 

  116. Zhang GD, Harada A, Niushiyama N, Jiang DL, Koyama H, Aida T, Kataoka K. Polyion complex micelles entrapping cationic dendrimer porphyrin: effective photosensitizer for photodynamic therapy of cancer. J Control Release. 2003;93:141–50.

    CAS  PubMed  Google Scholar 

  117. Nishiyama N, Morimoto Y, Jang W-D, Kataoka K. Design and development of dendrimer photosensitizer-incorporated polymeric micelles for enhanced photodynamic therapy. Adv Drug Deliv Rev. 2009;61:327–38.

    CAS  PubMed  Google Scholar 

  118. Roy I, Chulchanskyy TY, Pudavar HE, Bergey EJ, Oseroff AR, Morgan J, Dougherty TJ, Prasad PN. Ceramic-based nanoparticles entrapping water-insoluble photosensitizing anticancer drugs: a novel drug-carrier system for photodynamic therapy. J Am Chem Soc. 2003;125:7860–5.

    CAS  PubMed  Google Scholar 

  119. Hone DC, Walker PI, Evans-Gowing R, FitzGerald S, Beeby A, Chambrier I, Cook MJ, Russell DA. Generation of cytotoxic singlet oxygen via phthalocyanine-stabilized gold nanoparticles: a potential delivery vehicles for photodynamic therapy. Langmuir. 2002;18:2985–7.

    CAS  Google Scholar 

  120. Wieder ME, Hone DC, Cock MJ, Handsley MM, Gavrilovic J, Russel DA. Intracellular photodynamic therapy with photosensitizer-nanoparticle conjugates: cancer therapy using a Troian horse. Photochem Photobiol Sci. 2006;5:727–34.

    CAS  PubMed  Google Scholar 

  121. Ricci-Junior E, Marchetti JM. Preparation, characterization, phototoxicity assay of PLGA nanoparticles containing zinc(II) phthalocyanine for photodynamic therapy use. J Microencapsul. 2006;23:523–38.

    CAS  PubMed  Google Scholar 

  122. Zhu Z, Tang Z, Phillips JA, Yang R, Wang H, Tan H. Regulation of singlet oxygen generation using single-walled carbon nanotubes. J Am Chem Soc. 2008;130:10857–8.

    Google Scholar 

  123. Erbas S, Gorgulu A, Kocakusakogullari M, Akkaya EU. Non-covalent functionalized SWNTs as delivery agents for novel Bodipy-based potential PDT sensitizers. Chem Commun. 2009;4956–8.

    Google Scholar 

  124. Zhang XQ, Chen M, Lam R, Xu X, Osawa E, Ho D. Polymer-functionalized nanodiamond platforms as vehicles for gene delivery. ACS Nano. 2009;3:2609–16.

    CAS  PubMed  Google Scholar 

  125. Zhang L, Gu FX, Chan JM, Wang AZ, Langer RS, Farokhzad OC. Nanoparticles in medicine: therapeutic applications and developments. Clin Pharmacol Ther. 2008;83:761–9.

    CAS  PubMed  Google Scholar 

  126. Berg K, Prasmicakite L, Selbo PK, Hellum M, Bonsted, Hogset A. Photochemical Internalization (PCI)—novel technology for release of macromolecules from endocytic vesicles. Oftalmologia. 2003;56:67–71.

    PubMed  Google Scholar 

  127. Berg K, Selbo PK, Prasmicakite L, Hogset A. Photochemial drug and gene delivery. Curr Opin Mol Ther. 2004;6:279–87.

    CAS  PubMed  Google Scholar 

  128. Prasmickaite L, Hogset A, Berg K. Evaluation of different photosensitizers for use in photochemical gene transfection. Photochem Photobiol. 2001;73:388–95.

    CAS  PubMed  Google Scholar 

  129. Hogset A, Ovstebo Engesaeter B, Prasmicakite L, Berg K, Fodstad O, Maelandsmo GM. Light-induced adenovirus gene transfer, an efficient and specific gene delivery technology for cancer gene therapy. Cancer Gene Ther. 2002;9:365–71.

    CAS  PubMed  Google Scholar 

  130. Folini M, Berg K, Millo E, Villa R, Prasmickaite L, Daidone MG, Benatti U, Zaffaroni N. Photochemical internalization of a peptide nucleic acid targeting the catalytic subunit of human telomerase. Cancer Res. 2003;63:3490–4.

    CAS  PubMed  Google Scholar 

  131. Selbo PK, Sandvig K, Kirveliene V, Berg K. Release of gelonin from endosomes and lysosomes to cytosol by photochemical internalization. Biochim Biophys Acta. 2000;1475:307–13.

    CAS  PubMed  Google Scholar 

  132. Rai P, Mallidi S, Zheng X, Rahmanzadeh R, Mir Y, Elrington S, Khurshid A, Hasan T. Development and applications of photo-triggered theranostic agents. Adv Drug Deliv Rev. 2010;62:1094–124.

    PubMed Central  CAS  PubMed  Google Scholar 

  133. Menon JU, Jadeja P, Tambe P, Vu K, Yuan B, Nguyen KT. Nanomaterials for photo-based diagnostic and therapeutic applications. Theranostics. 2013;3:152–66.

    PubMed Central  CAS  PubMed  Google Scholar 

  134. Chen J, Liu TWB, Lo P-C, Wilson BC, Zheng G. “Zipper” molecular beacons: a generalized strategy to optimize the performance of activatable protease probes. Bioconj Chem. 2009;20:1836–42.

    CAS  Google Scholar 

  135. von Tappeiner H Jesionek A. Therapeutische versuche mit fluoreszierenden stoffen. Muench Med Wochenschr. 1904;47:2042–4.

    Google Scholar 

  136. von Tappeiner H. Zur kenntnis der lichtwirkenden stoffe. Dtsch Med Wocheschr. 1904;16:579–80.

    Google Scholar 

  137. Schwartz S, Absolon K, Vermund H. Some relationships of porphyrins, x-rays and tumors. Med Bull. 1955;27:7–13.

    Google Scholar 

  138. Lipson RL, Baldes EJ. The photodynamic properties of a particular hematoporphyrin derivative. Arch Dermatol. 1960;82:508–16.

    CAS  PubMed  Google Scholar 

  139. Patrice T. Photodynamic therapy. In: Haeder D, Jori G, Editor. Cambridge: Royal Society of Chemistry; 2003.

    Google Scholar 

  140. Qiang YG, Yow CM, Huang Z. Combination of photodynamic therapy and immunomodulation: current status and future trends. Med Res Rev. 2008;28:632–44.

    PubMed Central  CAS  PubMed  Google Scholar 

  141. Bredell MG, Besic E, Maake C, Walt H. The application and challenges of clinical PD-PDT in the head and neck region: a short review. J Photochem Photobiol B. 2010;101:185–90.

    CAS  PubMed  Google Scholar 

  142. Biel M. Advances in photodynamic therapy for the treatment of head and neck cancers. Lasers Surg Med. 2006;38:349–55.

    CAS  PubMed  Google Scholar 

  143. Hopper C, Kubler A, Lewis H, Tan IB, Putnam G. mTHPC-mediated photodynamic therapy for early oral squamous cell carcinoma. Int J Cancer. 2004;111:138–46.

    CAS  PubMed  Google Scholar 

  144. Sieron A, Namyslowski G, Misiolek M, Adamek M, Kawczyk-Krupka A. Photodynamic therapy of premalignant lesions and local recurrence of laryngeal and hypopharyngeal cancers. Eur Arch Otorhinolaryngol. 2001;258:349–52.

    CAS  PubMed  Google Scholar 

  145. Cengel KA, Glatstein E, Hahn SM. Intraperitoneal photodynamic therapy. Cancer Treat Res. 2007;134:493–514.

    CAS  PubMed  Google Scholar 

  146. Pinthus JH, Bogaards A, Weersink R, Wilson BC, Trachtenberg J. Photodynamic therapy for urological malignancies: past to current approaches. J Urol. 2006;175:1201–7.

    CAS  PubMed  Google Scholar 

  147. Koudinova NV, Pinthus JH, Brandis A, Brenner O, Bendel P, Ramon J, Eshhar Z, Scherz A, Salomon Y. Photodynamic therapy with Pd-Bacteriopheophorbide (TOOKAD):successful in vivo treatment of human prostatic small cell carcinoma xenografts. Int J Cancer. 2003;104:782–9.

    CAS  PubMed  Google Scholar 

  148. Kostron H. Photodynamic diagnosis and therapy and the brain. Methods Mol Biol. 2010;635:261–80.

    CAS  PubMed  Google Scholar 

  149. Loewen GM, Pandey R, Bellnier D, Henderson B, Dougherty T. Endobronchial photodynamic therapy for lung cancer. Lasers Surg Med. 2006;38:364–70.

    PubMed  Google Scholar 

  150. Stummer W, Novotny A, Stepp H, Goetz C, Bise K, Reulen HJ. Fluorescence-guided resection of glioblastoma multiforme by using 5-aminolevulinic acid-induced porphyrins: a prospective study in 52 consecutive patients. J Neurosurg. 2000;93:1003–13.

    CAS  PubMed  Google Scholar 

  151. Hamblin MR, Hasan T. Photodynamic therapy: a new antimicrobial approach to infectious disease. Photochem Photobiol Sci. 2004;3:436–50.

    PubMed Central  CAS  PubMed  Google Scholar 

  152. Coppellotti O, Fabris C, Soncin M, Magaraggia M, Camerin M, Guidolin L, Jori G. Porphyrin-photosensitised processes in the prevention and treatment of water- and vector-borne diseases. Curr Med Chem. 2012;19:808–19.

    CAS  PubMed  Google Scholar 

  153. Ibbotson SH. Topical 5-aminolevulinic acid photodynamic therapy for the treatment of skin conditions other than non-melanoma skin cancer. Br J Dermatol. 2002;146:178–88.

    CAS  PubMed  Google Scholar 

  154. Bressler NM. Photodynamic therapy of subfoveal choroidal neovascularisation in age-related macular degeneration with verteporfin: two year results of two randomized clinical trials-tap report. Arch Ophthalmol. 2001;119(2):198–207.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Valentina Rapozzi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Rapozzi, V., Jori, G. (2015). Basic and Clinical Aspects of Photodynamic Therapy. In: Rapozzi, V., Jori, G. (eds) Resistance to Photodynamic Therapy in Cancer. Resistance to Targeted Anti-Cancer Therapeutics, vol 5. Springer, Cham. https://doi.org/10.1007/978-3-319-12730-9_1

Download citation

Publish with us

Policies and ethics