Skip to main content

Part of the book series: Springer Monographs in Mathematics ((SMM))

  • 1984 Accesses

Summary

While in Part I, some concrete functions were discussed, this chapter shows how Baire category methods lead to a description of typical continuous functions on the interval \(\mathbb{I} = [0,1]\). In Sect. 7.2, we prove that most (in the categorial sense) of the continuous functions on \(\mathbb{I}\) belong to \(\boldsymbol{\mathcal{N}}\boldsymbol{\mathcal{D}}_{\pm }(\mathbb{I})\), while in Sect. 7.5, it is shown that the set \(\boldsymbol{\mathcal{N}}\boldsymbol{\mathcal{D}}_{\pm }^{\infty }(\mathbb{I})\) of all continuous functions on \(\mathbb{I}\) having nowhere a unilateral (finite or infinite) derivative is a thin set (in the categorial sense). Nevertheless, later, in Sect. 11.1, we will see that \(\boldsymbol{\mathcal{N}}\boldsymbol{\mathcal{D}}_{\pm }^{\infty }(\mathbb{I})\) is not empty.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. E. de Amo, J. Fernández-Sánchez, Takagi’s function revisited from an arithmetical point of view. Int. J. Pure Appl. Math. 54, 407–427 (2009)

    MathSciNet  MATH  Google Scholar 

  2. P.C. Allaart, K. Kawamura, The Takagi function: a survey. Real Anal. Exch. 37, 1–54 (2011/2012)

    Google Scholar 

  3. F.A. Albiac, N.J. Kalton, in Topics in Banach Space Theory. Graduate Texts in Mathematics (Springer, New York, 2006)

    Google Scholar 

  4. P.C. Allaart, K. Kawamura, Extreme values of some continuous nowhere differentiable functions. Math. Proc. Camb. Philos. Soc. 140, 269–295 (2006)

    Article  MathSciNet  Google Scholar 

  5. P.C. Allaart, K. Kawamura, The improper infinite derivatives of Takagi’s nowhere-differentiable function. J. Math. Anal. Appl. 372, 656–665 (2010)

    Article  MathSciNet  Google Scholar 

  6. P.C. Allaart, Level sets of signed Takagi functions. arXiv:1209.6120v2 (2013)

    Article  MathSciNet  Google Scholar 

  7. J. Alsina, The Peano curve of Schoenberg is nowhere differentiable. J. Approx. Theory 33, 28–42 (1981)

    Article  MathSciNet  Google Scholar 

  8. A.M. Ampère, Recherches sur quelques points de la théorie des fonctions dérivées qui condiusent à une nouvelle démonstration de la série de Taylor, et à l’expression finie des termes qu’on néglige lorsqu’on arrête cette série à un terme quelconque. J. École Polytech. 6, 148–181 (1806)

    Google Scholar 

  9. D. André, Solution directe du problème résolu par M. Bertrand. C. R. Acad. Sci. Paris 105, 436–437 (1887)

    MATH  Google Scholar 

  10. V. Anisiu, Porosity and continuous, nowhere differentiable functions. Ann. Fac. Sci. Toulouse 2, 5–14 (1993)

    Article  MathSciNet  Google Scholar 

  11. E.G. Begle, W.L. Ayres, On Hildebrandt’s example of a function without a finite derivative. Am. Math. Mon. 43, 294–296 (1936)

    Article  Google Scholar 

  12. Y. Baba, On maxima of Takagi–van der Waerden functions. Proc. Am. Math. Soc. 91, 373–376 (1984)

    Article  MathSciNet  Google Scholar 

  13. S. Banach, Sur les fonctions dérivées des fonctions mesurables. Fundam. Math. 3, 128–132 (1922)

    Article  Google Scholar 

  14. S. Banach, Über die bairesche Kategorie gewisser Funktionenmengen. Stud. Math. 3, 174–179 (1931)

    Article  Google Scholar 

  15. B. Bailland, H. Bourget, Correspondence d’Hermite et de Stieltjes, vol. 2 (Gauthier–Villas, Paris, 1905)

    Google Scholar 

  16. A. Baouche, S. Dubuc, La non-dérivabilité de la fonction de Weierstrass. Enseign. Math. 38, 89–94 (1992)

    MathSciNet  MATH  Google Scholar 

  17. A. Baouche, S. Dubuc, A unified approach for nondifferentiable functions. J. Math. Anal. Appl. 182, 134–142 (1994)

    Article  MathSciNet  Google Scholar 

  18. B.C. Berndt, R.J. Evans, The determination of Gauss sums. Bull. Am. Math. Soc. 5, 107–129 (1981)

    Article  MathSciNet  Google Scholar 

  19. F.A. Behrend, Some remarks on the construction of continuous non-differentiable functions. Proc. Lond. Math. Soc. 50, 463–481 (1949)

    MathSciNet  MATH  Google Scholar 

  20. A.S. Belov, Everywhere divergent trigonometric series (Russian). Mat. Sb. (N.S.) 85(127), 224–237 (1971)

    Google Scholar 

  21. A.S. Belov, A study of certain trigonometric series (Russian). Mat. Zametki 13, 481–492 (1973)

    MathSciNet  Google Scholar 

  22. A.S. Belov, The sum of a lacunary series (Russian). Trudy Moskov. Mat. Obšč 33, 107–153 (1975)

    MathSciNet  MATH  Google Scholar 

  23. E.I. Berezhnoi, The subspace of \(\mathcal{C}[0,1]\) consisting of functions having finite one-sided derivatives nowhere. Math. Notes 73, 321–327 (2003)

    Article  MathSciNet  Google Scholar 

  24. A.S. Besicovitch, An investigation of continuous functions in connection with the question of their differentiability (Russian). Mat. Sb. 31, 529–556 (1924)

    Google Scholar 

  25. R. Balasubramanian, S. Kanemitsu, M. Yoshimoto, Euler products, Farey series and the Riemann hypothesis II. Publ. Math. Debrecen 69, 1–16 (2006)

    MATH  Google Scholar 

  26. P. van Emde Boas, Nowhere differentiable continuous functions. Technical Report, Mathematisch Centrum Amsterdam (1969)

    MATH  Google Scholar 

  27. R.P. Boas, in Invitation to Complex Analysis (Second Edition Revised by Harold P. Boas). MAA Textbooks (Mathematical Association of America, Washington, DC, 2010)

    Google Scholar 

  28. J. Bobok, On a space of Besicovitch functions. Real Anal. Exch. 30, 173–182 (2005)

    Article  MathSciNet  Google Scholar 

  29. J. Bobok, Infinite dimensional Banach space of Besicovitch functions. Real Anal. Exch. 32, 319–333 (2007)

    Article  MathSciNet  Google Scholar 

  30. J. Bobok, On spaceability of Besicovitch functions. Preprint (2014)

    Google Scholar 

  31. N. Bourbaki, Functions of a Real Variable (Springer, Berlin, 2004)

    Book  Google Scholar 

  32. P. Bois-Reymond, Versuch einer Classification der willkürlichen Functionen reeller Argumente nach ihren Aenderungen in den kleinsten Intervallen. J. Reine Angew. Math. 79, 21–37 (1874)

    MathSciNet  MATH  Google Scholar 

  33. T.J.I’a. Bromwich, An Introduction to the Theory of Infinite Series (Macmillan, London/New York, 1908)

    Google Scholar 

  34. A. Bruckner, Some new simple proofs of old difficult theorems. Real Anal. Exch. 9, 74–75 (1984)

    MATH  Google Scholar 

  35. V.F. Bržečka, On Bolzano’s function (Russian). Uspehi Matem. Nauk (N.S.) 2(30), 15–21 (1949)

    Google Scholar 

  36. K.A. Bush, Continuous functions without derivatives. Am. Math. Mon. 59, 222–225 (1952)

    Article  MathSciNet  Google Scholar 

  37. G. Cantor, Über die einfachen Zahlensysteme. Schlömilch Z. XIV, 121–128 (1869)

    Google Scholar 

  38. F.S. Cater, Constructing nowhere differentiable functions from convex functions. Real Anal. Exch. 28, 617–621 (2002/03)

    Google Scholar 

  39. F.S. Cater, A typical nowhere differentiable function. Canad. Math. Bull. 26, 149–151 (1983)

    Article  MathSciNet  Google Scholar 

  40. F.S. Cater, On van der Waerden’s nowhere differentiable function. Am. Math. Mon. 91, 307–308 (1984)

    Article  MathSciNet  Google Scholar 

  41. F.S. Cater, An elementary proof of a theorem on unilateral derivatives. Can. Math. Bull. 29, 341–343 (1986)

    Article  MathSciNet  Google Scholar 

  42. F.S. Cater, Remark on a function without unilateral derivatives. J. Math. Anal. Appl. 182, 718–721 (1994)

    Article  MathSciNet  Google Scholar 

  43. M.Ch. Cellérier, Note sur les principes fondamentaux de l’analyse. Darboux Bull. 14, 142–160 (1890)

    MATH  Google Scholar 

  44. G. Darboux, Mémoir sur les fonctions discontinues. Ann. Sci. École Norm. Sup. Sér. 2 4, 57–112 (1875)

    Article  Google Scholar 

  45. G. Darboux, Addition au mémoire sur les fonctions discontinues. Ann. Sci. École Norm. Sup. Sér. 2 8, 195–202 (1879)

    Article  Google Scholar 

  46. A. Denjoy, Mémoire sur les nombres dérivés des fonctions continues. J. Math. 1, 105–240 (1915)

    MATH  Google Scholar 

  47. W.F. Darsow, M.J. Frank, H.-H. Kairies, Errata: “Functional equations for a function of van der Waerden type”. Rad. Mat. 5, 179–180 (1989)

    MathSciNet  MATH  Google Scholar 

  48. U. Dini, Su alcune funzioni che in tutto un intervallo non hanno mai derivata. Annali di Matematica 8, 122–137 (1877)

    MATH  Google Scholar 

  49. U. Dini, Grundlagen für eine Theorie der Functionen einer veränderlichen reelen Grösse (B.G. Teubner, Leipzig, 1892)

    MATH  Google Scholar 

  50. E.P. Dolženko, Boundary properties of arbitrary functions. Izv. Akad. Nauk SSSR Ser. Mat. 31, 3–14 (1967)

    MathSciNet  Google Scholar 

  51. L. Dirichlet, P.L. Seidel, Die Darstellung ganz willkürlicher Functionen durch Sinus- und Cosinusreihen (Wilhelm Engelmann, Leipzig, 1900)

    MATH  Google Scholar 

  52. P. Enflo, V.I. Gurariy, On lineability and spaceability of sets in function spaces. Preprint

    Google Scholar 

  53. P. Enflo, V.I. Gurariy, J.B. Seoane-Sepúlveda, Some results and open questions on spaceability in function spaces. Trans. Am. Math. Soc. 366, 611–625 (2014)

    Article  MathSciNet  Google Scholar 

  54. A. Eskenazis, K. Makridis, Topological genericity of nowhere differentiable functions in the disc and polydisc algebras. J. Math. Anal. Appl. 420, 435–446 (2014)

    Article  MathSciNet  Google Scholar 

  55. A. Eskenazis, Topological genericity of nowhere differentiable functions in the disc algebra. Arch. Math. 103, 85–92 (2014)

    Article  MathSciNet  Google Scholar 

  56. L. Euler, Introductio in Analysin in Infinitorum (Appud Marcum-Michaelem Bousquet & Socios, Lausanne, 1748)

    Google Scholar 

  57. G. Faber, Einfaches Beispiel einer stetigen nirgends differentiierbaren Funktion. Jahresber. Deutschen Math. Verein. 16, 538–540 (1907)

    MATH  Google Scholar 

  58. G. Faber, Über stetige Funktionen. Math. Ann. 66, 81–94 (1908)

    Article  MathSciNet  Google Scholar 

  59. G. Faber, Über stetige Funktionen. Math. Ann. 69, 372–443 (1910)

    Article  MathSciNet  Google Scholar 

  60. V.P. Fonf, V.I. Gurariy, M.I. Kadets, An infinite-dimensional subspace of \(\mathcal{C}[0,1]\) consisting of nowhere differentiable functions. C. R. Acad. Bulg. 52, 13–16 (1999)

    MathSciNet  MATH  Google Scholar 

  61. L. Filipczak, Exemple d’une fonction continue privée symétrique partout. Colloq. Math. 20, 249–253 (1969)

    Article  MathSciNet  Google Scholar 

  62. K.M. Garg, On a residual set of continuous functions. Czechoslov. Math. J. 20, 537–543 (1970)

    MathSciNet  MATH  Google Scholar 

  63. J. Gerver, The differentiability of the Riemann function at certain rational multiples of π. Am. J. Math. 92, 33–55 (1970)

    Google Scholar 

  64. J. Gerver, More on the differentiability of the Riemann function. Am. J. Math. 93, 33–41 (1971)

    Article  MathSciNet  Google Scholar 

  65. R. Girgensohn, Nowhere differentiable solutions of a system of functional equations. Aequationes Math. 47, 89–99 (1994)

    Article  MathSciNet  Google Scholar 

  66. V.I. Gurariy, Subspaces of differentiable functions in the space of continuous functions (Russian). Funktsii Funktsional. Anal. Prilozhen 4, 161–121 (1967)

    Google Scholar 

  67. V.I. Gurariy, Linear spaces composed of everywhere nondifferentiable functions (Russian). C. R. Acad. Bulg. Sci. 44, 13–16 (1991)

    MathSciNet  Google Scholar 

  68. H. Hahn, Über stetige Funktionen ohne Ableitung. Deutsche Math. Ver. 26, 281–284 (1917)

    MATH  Google Scholar 

  69. B. Hailpern, Continuous non-differentiable functions. Pi Mu Epsilon J. 6, 249–260 (1976)

    MathSciNet  MATH  Google Scholar 

  70. E.H. Hanson, A new proof of a theorem of Denjoy, Young, and Saks. Bull. Am. Math. Soc. 40, 691–694 (1934)

    Article  MathSciNet  Google Scholar 

  71. G.H. Hardy, Weierstrass’s non-differentiable function. Trans. Am. Math. Soc. 17, 301–325 (1916)

    MathSciNet  MATH  Google Scholar 

  72. M. Hata, On Weierstrass’s non-differentiable function. C. R. Acad. Sci. Paris 307, 119–123 (1988)

    MathSciNet  MATH  Google Scholar 

  73. M. Hata, Singularities of the Weierstrass type functions. J. Anal. Math. 51, 62–90 (1988)

    Article  MathSciNet  Google Scholar 

  74. M. Hata, Topological aspects of self-similar sets and singular functions, in Fractal Geometry and Analysis, ed. by J. Bélais, S. Dubuc (Kluwer, Dordrecht, 1991), pp. 255–276

    Chapter  Google Scholar 

  75. M. Hata, Correction to: “Singularities of the Weierstrass type functions” [J. Anal. Math. 51 (1988)]. J. Anal. Math. 64, 347 (1994)

    Article  MathSciNet  Google Scholar 

  76. K. Hertz, On functions having no differential quotient (Polish). Diary of the Society of Sciences in Paris 11, 1–24 (1879)

    Google Scholar 

  77. T.H. Hildebrandt, A simple continuous function with a finite derivative at no point. Am. Math. Mon. 40, 547–548 (1933)

    MATH  Google Scholar 

  78. E.W. Hobson, The Theory of Functions of a Real Variable and the Theory of Fourier Series, vol. II (Cambridge University Press, Cambridge, 1926)

    MATH  Google Scholar 

  79. R.I. Hovsepyan, On trigonometric series and primitive functions. J. Contemp. Math. Anal. Armen. Acad. Sci. 44, 205–211 (2009)

    MathSciNet  MATH  Google Scholar 

  80. B.R. Hunt, T. Sauer, J. Yorke, Prevalence: a translation-invariant “almost every” on infinite-dimensional spaces. Bull. Am. Math. Soc. 27, 217–238 (1992)

    Article  MathSciNet  Google Scholar 

  81. B.R. Hunt, The prevalence of continuous nowhere differentiable functions. Proc. Am. Math. Soc. 122, 711–717 (1994)

    Article  MathSciNet  Google Scholar 

  82. P. Hartman, A. Wintner, On the law of the iterated logarithm. Am. J. Math. 63, 169–176 (1941)

    Article  Google Scholar 

  83. G.H. Hardy, E.M. Wright, An Introduction to the Theory of Numbers (Clarendon, Oxford, 1979)

    MATH  Google Scholar 

  84. M. Hata, M. Yamaguti, The Takagi function and its generalization. Japan J. Appl. Math. 1, 183–199 (1984)

    Article  MathSciNet  Google Scholar 

  85. S. Itatsu, Differentiability of Riemann’s function. Proc. Jpn. Acad. Ser. A Math. Sci. 57, 492–495 (1981)

    Article  MathSciNet  Google Scholar 

  86. V. Jarník, O funkci Bolzanově. Časopis pro pěstování matematiky a fysiky 51, 248–264 (1922)

    Google Scholar 

  87. V. Jarník, Über die Differenzierbarkeit stetiger Funktionen. Fundam. Math. 21, 48–58 (1933)

    Article  Google Scholar 

  88. V. Jarník, Sur les nombres dérivés approximatifs. Fundam. Math. 22, 4–16 (1934)

    Article  Google Scholar 

  89. V. Jarník, On Bolzano’s function, in Bolzano and the Foundations of Mathematical Analysis (On the Occasion of the Bicentennial of Bernard Bolzano) (Society of Czechoslovak Mathematicians and Physicists, Prague, 1981), pp. 67–81

    MATH  Google Scholar 

  90. J. Johnsen, Simple proofs of nowhere-differentiability for Weierstrass’s function and cases of slow growth. J. Fourier Anal. Appl. 16, 17–33 (2010)

    Article  MathSciNet  Google Scholar 

  91. P. Jiménez-Rodriguez, G.A. Muñoz-Fernández, J.B. Seoane-Sepúlveda, On Weierstrass monsters and lineability. Bull. Belg. Math. Soc. Simon Stevin 20, 577–586 (2013)

    MathSciNet  MATH  Google Scholar 

  92. M. Kac, in Statistical Independence in Probability, Analysis and Number Theory. The Carus Mathematical Monographs, vol. 12 (Wiley, New York, 1959)

    Google Scholar 

  93. P. Kalášek, Note to a paper by V. Petrůva (Czech). Časopis Pěst. Mat. 98, 156–158 (1973)

    Google Scholar 

  94. H. Katsuura, Nowhere differentiable functions—an application of contraction mappings. Am. Math. Mon. 98, 411–416 (1991)

    Article  MathSciNet  Google Scholar 

  95. H.-H. Kairies, W.F. Darsow, M.J. Frank, Functional equations for a function of van der Waerden type. Rad. Mat. 4, 361–374 (1988)

    MathSciNet  MATH  Google Scholar 

  96. K. Kiesswetter, Ein einfaches Beispiel einer Funktion, welche überall stetig und nicht differenzierbar ist. Math. Phys. Semesterber. 13, 216–221 (1966)

    MathSciNet  MATH  Google Scholar 

  97. R. Kannan, C.K. Krueger, Advanced Analysis on the Real Line (Springer, Berlin, 1996)

    MATH  Google Scholar 

  98. F. Klein, Anwendung der Differential- und Integralrechnung auf Geometrie, eine Revision der Prinzipien (B.G. Teubner, Leipzig, 1902)

    MATH  Google Scholar 

  99. K. Knopp, Ein einfaches Verfahren zur Bildüng stetiger nirgends differenzierbarer Funktionen. Math. Z. 2, 1–26 (1918)

    Article  MathSciNet  Google Scholar 

  100. K. Kobayashi, On the critical case of Okamoto’s continuous non-differentiable functions. Proc. Jpn. Acad. 85, 101–104 (2009)

    Article  MathSciNet  Google Scholar 

  101. N. Kôno, On generalized Takagi functions. Acta Math. Hung. 49, 315–324 (1987)

    Article  MathSciNet  Google Scholar 

  102. P. Kostyrko, On the symmetric derivative. Colloq. Math. 25, 265–267 (1972)

    Article  MathSciNet  Google Scholar 

  103. G. Kowalewski, Über Bolzanos nichtdifferenzierbare stetige Funktion. Acta Math. 44, 315–319 (1923)

    Article  MathSciNet  Google Scholar 

  104. M. Krüppel, On the extrema and the improper derivatives of Takagi’s continuous nowhere differentiable function. Rostock. Math. Kolloq. 62, 41–59 (2007)

    MathSciNet  MATH  Google Scholar 

  105. M. Krüppel, Takagi’s continuous nowhere differentiable function and binary digital sums. Rostock. Math. Kolloq. 63, 37–54 (2008)

    MathSciNet  MATH  Google Scholar 

  106. M. Krüppel, On the improper derivatives of Takagi’s continuous nowhere differentiable function. Rostock. Math. Kolloq. 65, 3–13 (2010)

    MATH  Google Scholar 

  107. M. Kac, R. Salem, A. Zygmund, A gap theorem. Trans. Am. Math. Soc. 63, 235–243 (1948)

    Article  MathSciNet  Google Scholar 

  108. A. Kucharski, Math’s beautiful monsters; how a destructive idea paved the way to modern math. Nautilus Q. (11) (2014)

    Google Scholar 

  109. H.-H. Kairies, P. Volkmann, Ein Vektorraumisomorphismus vom Summentyp. Preprint, University of Karlsruhe (2002)

    Google Scholar 

  110. S. Kanemitsu, M. Yoshimoto, Euler products, Farey series and the Riemann hypothesis. Publ. Math. Debr. 56, 431–449 (2000)

    MATH  Google Scholar 

  111. J.C. Lagarias, The Takagi function and its properties, in Functions in Number Theory and Their Probabilistic Aspects (Research Institute of Mathematical Sciences, Kyoto, 2012), pp. 153–189

    MATH  Google Scholar 

  112. G. Landsberg, On the differentiability of continuous functions (Über die Differentiierbarkeit stetiger Funktionen). Jahresber. Deutschen Math. Verein. 17, 46–51 (1908)

    Google Scholar 

  113. H. Lebesgue, Une fonction continue sans dérivée. Enseign. Math. 38, 212–213 (1939–1940)

    Google Scholar 

  114. M. Lerch, Über die Nichtdifferentiirbarkeit gewisser Functionen. J. Math. 103, 126–138 (1888)

    Google Scholar 

  115. B. Levine, D. Milman, On linear sets in space C consisting of functions of bounded variation (Russian). Comm. Inst. Sci. Math. Mecan. Univ. Kharkoff Soc. Math. Kharkoff IV. Ser. 16, 102–105 (1940)

    Google Scholar 

  116. D. Li, J. Miao, Generalized Kiesswetter’s functions. Preprint (2014)

    Google Scholar 

  117. W. Luther, The differentiability of Fourier gap series and “Riemann’s example” of a continuous, nondifferentiable function. J. Approx. Theory 48, 303–321 (1986)

    Article  MathSciNet  Google Scholar 

  118. R.T. Lyche, Une fonction continue sans dérivée. Enseign. Math. 38, 208–211 (1939/1940)

    Google Scholar 

  119. J. Malý, Where the continuous functions without unilateral derivatives are typical. Trans. Am. Math. Soc. 283, 169–175 (1984)

    Article  MathSciNet  Google Scholar 

  120. L. Maligranda, Karol Hertz (1843–1904) — absolwent Szkoły Głównej Warszawskiej (Polish). Antiquit. Math. 3, 65–87 (2009)

    Google Scholar 

  121. J. Marcinkiewicz, Sur les nombres dérivés. Fundam. Math. 24, 305–308 (1935)

    Article  Google Scholar 

  122. R.D. Mauldin, The set of continuous nowhere differentiable functions. Pac. J. Math. 83, 199–205 (1979)

    Article  MathSciNet  Google Scholar 

  123. S. Mazurkiewicz, Sur les fonctions non dérivables. Stud. Math. 3, 92–94 (1931)

    Article  Google Scholar 

  124. J. McCarthy, An everywhere continuous nowhere differentiable function. Am. Math. Mon. 60, 709 (1953)

    Article  MathSciNet  Google Scholar 

  125. D.P. Minassian, J.W. Gaisser, A simple Weierstrass function. Am. Math. Mon. 91, 254–256 (1984)

    Article  MathSciNet  Google Scholar 

  126. M. Mikolás, Construction des familles de fonctions partout continues non dérivables. Acta Sci. Math. 17, 49–62 (1956)

    MathSciNet  MATH  Google Scholar 

  127. E. Mohr, Wo ist die Riemannsche Funktion \(\sum \limits _{n=1}^{\infty }\frac{\sin n^{2}x} {n^{2}}\) nichtdifferenzierbar? Ann. Mat. Pura Appl. 123, 93–104 (1980)

    Article  MathSciNet  Google Scholar 

  128. A.P. Morse, A continuous function with no unilateral derivatives. Trans. Am. Math. Soc. 44, 496–507 (1938)

    Article  MathSciNet  Google Scholar 

  129. M. Morayne, On differentiability of Peano type functions. Colloq. Math. 53, 129–132 (1987)

    Article  MathSciNet  Google Scholar 

  130. B.N. Mukhopadhyay, On some generalisations of Weierstraß  nondifferentiable functions. Bull. Calcutta M.S. 25, 179–184 (1934)

    Google Scholar 

  131. H. Okamoto, A remark on continuous, nowhere differentiable functions. Proc. Jpn. Acad. 81, 47–50 (2005)

    Article  MathSciNet  Google Scholar 

  132. K. Oldham, J. Myland, J. Spanier, An Atlas of Functions (Springer, Berlin, 2009)

    Book  Google Scholar 

  133. H. Okamoto, M. Wunsch, A geometric construction of continuous, strictly increasing singular functions. Proc. Jpn. Acad. 83, 114–118 (2007)

    Article  MathSciNet  Google Scholar 

  134. M. Pasch, Veränderliche und Funktion (B.G. Teubner, Leipzig/Berlin, 1914)

    MATH  Google Scholar 

  135. E.D. Pepper, On continuous functions without a derivative. Fundam. Math. 12, 244–253 (1928)

    Article  Google Scholar 

  136. J.B. Perrin, Atoms (D. van Nostrand Company, 1916)

    Google Scholar 

  137. F.W. Perkins, An elementary example of a continuous non-differentiable function. Am. Math. Mon. 34, 476–478 (1927)

    Article  MathSciNet  Google Scholar 

  138. F.W. Perkins, A note on certain continuous non-differentiable functions. Bull. Am. Math. Soc. 35, 239–247 (1929)

    Article  MathSciNet  Google Scholar 

  139. K. Petr, Example of a continuous function without derivative at any point (Czech). Časopis Pěst. Mat. 49, 25–31 (1920)

    Google Scholar 

  140. V. Petrův, On the symmetric derivative of continuous functions (Czech). Časopis Pěst. Mat. 83, 336–342 (1958)

    MathSciNet  Google Scholar 

  141. H. Poincaré, La logique et l’intuition dans la sciences mathématique et dans l’enseigment. Enseign. Math. 1, 157–162 (1899)

    MATH  Google Scholar 

  142. C. Pommerenke, in Boundary Behaviour of Conformal Maps. Grundlehren Der Mathematischen Wissenschaften, vol. 299 (Springer, Berlin, 1992)

    Google Scholar 

  143. M.B. Porter, Derivativeless continuous functions. Bull. Am. Math. Soc. 25, 176–180 (1919)

    Article  MathSciNet  Google Scholar 

  144. P.P. Petrushev, S.L. Troyanski, On the Banach–Mazur theorem on the universality of w[0, 1] (Russian). C. R. Acad. Bulg. Sci. 37, 283–285 (1984)

    Google Scholar 

  145. M. Pratsiovytyi, N. Vasylenko, Fractal properties of functions defined in terms of Q-representation. Int. J. Math. Anal. 7, 3155–3167 (2013)

    Article  MathSciNet  Google Scholar 

  146. G. de Rham, Sur quelques courbes définies par des équations fonctionelles. Rend. Sem Mat. Univ. Torino 16, 101–113 (1957)

    Google Scholar 

  147. G. de Rham, Sur un exemple de fonction continue sans dérivée. Enseign. Math. 3, 71–72 (1957)

    MATH  Google Scholar 

  148. L. Rodriguez-Piazza, Every separable Banach space is isometric to a space of continuous nowhere differentiable functions. Proc. Am. Math. Soc. 123, 3650–3654 (1995)

    Article  MathSciNet  Google Scholar 

  149. R. Remmert, G. Schumacher, Funktionentheorie 2. Springer-Lehrbuch (Springer, Berlin/Heidelberg, 2002)

    MATH  Google Scholar 

  150. W. Rudin, Real and Complex Analysis (McGraw-Hill, New York, 1974)

    MATH  Google Scholar 

  151. K. Rychlik, Eine stetige nicht differenzierbare Funktion im Gebiete der Henselschen Zahlen. J. Math. 152, 178–179 (1923)

    MathSciNet  MATH  Google Scholar 

  152. H. Sagan, An elementary proof that Schoenberg’s space-filling curve is nowhere differentiable. Math. Mag. 65, 125–128 (1992)

    Article  MathSciNet  Google Scholar 

  153. H. Sagan, Space-Filling Curves. Universitext (Springer, New York, 1994)

    Book  Google Scholar 

  154. S. Saks, Sur les nombres derivées des fonctions. Fundam. Math. 5, 98–104 (1924)

    Article  Google Scholar 

  155. S. Saks, On the functions of Besicovitch in the space of continuous functions. Fundam. Math. 19, 211–219 (1932)

    Article  Google Scholar 

  156. I.J. Schoenberg, On the Peano curve of Lebesgue. Bull. Am. Math. Soc. 44, 8 (1938)

    Article  MathSciNet  Google Scholar 

  157. W. Sierpiński, An arithmetic example of a continuous non-differentiable function (Polish). Wektor 3, 337–343 (1914)

    Google Scholar 

  158. W. Sierpiński, Sur deux problémes de la théorie des fonctions non dérivables. Bull. Int Acad. Sci. Cracovie 162–182 (1914)

    Google Scholar 

  159. W. Sierpiński, Sur une propriété des fonctions quelconques d’une variable reéle. Fundam. Math. 25, 1–4 (1935)

    Article  MathSciNet  Google Scholar 

  160. A.N. Singh, On some new types of non-differentiable functions. Ann. Math. 28, 472–476 (1927)

    Article  MathSciNet  Google Scholar 

  161. A.N. Singh, On Bolzano’s non-differentiable function. Bull. Acad. Pol. A 1928, 191–200 (1928)

    MATH  Google Scholar 

  162. A.N. Singh, Arithmetic non-differentiable functions. Ann. Math. 31, 657–659 (1930)

    Article  MathSciNet  Google Scholar 

  163. A.N. Singh, The theory and construction of non-differentiable functions, in Squaring the Circle and Other Monographs. (Lucknow University Studies, Chelsea Publishing Company) (1935)

    Google Scholar 

  164. A.N. Singh, On functions without one-sided derivatives. Proc. Benares Math. Soc. 3, 55–69 (1941)

    MathSciNet  Google Scholar 

  165. A.N. Singh, On functions without one-sided derivatives ii. Proc. Benares Math. Soc. 4, 95–108 (1943)

    MathSciNet  MATH  Google Scholar 

  166. A. Smith, The differentiability of Riemann’s functions. Proc. Am. Math. Soc. 34, 463–468 (1972)

    MathSciNet  MATH  Google Scholar 

  167. A. Smith, Correction to: “The differentiability of Riemann’s function” [Proc. Am. Math. Soc. 34 (1972)]. Proc. Am. Math. Soc. 89, 567–568 (1983)

    Google Scholar 

  168. K.G. Spurrier, Continuous nowhere differentiable functions. Master’s thesis, South Carolina Honors College (2004)

    Google Scholar 

  169. A. Shidfar, K. Sabetfakhri, On the continuity of van der Waerden’s function in the Hölder sense. Am. Math. Mon. 93, 375–376 (1986)

    MATH  Google Scholar 

  170. E. Steinitz, Stetigkeit und Differentialquotient. Math. Ann. 52, 58–69 (1899)

    Article  MathSciNet  Google Scholar 

  171. T.J. Stieltjes, Quelques remarques à propos des dérivées d’une fonction d’une seule variable, in Œuvres Complètes de Thomas Jan Stieltjes, vol. I (Groningen, P. Noordhoff, 1914), pp. 67–72

    Google Scholar 

  172. W.C. Swift, Simple constructions of nondifferentiable functions and space-filling curves. Am. Math. Mon. 68, 653–655 (1961)

    Article  MathSciNet  Google Scholar 

  173. T. Takagi, A simple example of the continuous function without derivative. Proc. Phys. Math. Soc. Jpn. 1, 176–177 (1903). See also: The Collected Papers of Teiji Takagi (Springer, New York, 1990), pp. 4–5

    Google Scholar 

  174. A.L. Thomson, J.N. Hagler, Between a parabola and a nowhere differentiable place. Preprint

    Google Scholar 

  175. J. Thim, Continuous nowhere differentiable functions. Master’s thesis, Luleå University of Technology (2003)

    Google Scholar 

  176. N. Vasylenko, Nowhere differentiable Takagi function in problems and applications, in Fifth International Conference on Analytic Number Theory and Spatial Tessellations (2013), pp. 54–55

    Google Scholar 

  177. K. Volkert, Die Geschichte der pathologischen Funktionen. Ein Beitrag zur Entstehung der mathematischen Methodologie. Arch. Hist. Exact Sci. 37, 193–232 (1987)

    Article  MathSciNet  Google Scholar 

  178. K. Volkert, Zur Differenzierbarkeit stetiger Funktionen — Ampère’s Beweis und seine Folgen. Arch. Hist. Exact Sci. 40, 37–112 (1989)

    Article  MathSciNet  Google Scholar 

  179. B.L. van der Waerden, Ein einfaches Beispiel einer nicht-differenzierbaren stetigen Funktion. Math. Z. 32, 474–475 (1930)

    Article  MathSciNet  Google Scholar 

  180. K. Weierstrass, Abhandlungen aus der Funktionenlehre (Julius Springer, Berlin, 1886)

    MATH  Google Scholar 

  181. K. Weierstrass, Mathematische Werke (Mayer & Müller, Berlin, 1895)

    Google Scholar 

  182. K. Weierstrass, Briefe von K. Weierstrass an Paul du Bois-Reymond. Acta Math. 39, 199–225 (1923)

    Google Scholar 

  183. L. Wen, A nowhere differentiable continuous function. Am. Math. Mon. 107, 450–453 (2000)

    Article  MathSciNet  Google Scholar 

  184. L. Wen, A nowhere differentiable continuous function constructed using Cantor series. Math. Mag. 74, 400–402 (2001)

    Article  Google Scholar 

  185. L. Wen, A nowhere differentiable continuous function constructed by infinite products. Am. Math. Mon. 109, 378–380 (2002)

    Article  MathSciNet  Google Scholar 

  186. C. Wiener, Geometrische und analytische Untersuchung der Weierstrassschen Function. J. Reine Angew. Math. 90, 221–252 (1881)

    MathSciNet  MATH  Google Scholar 

  187. W. Wunderlich, Eine überall stetige und nirgends differenzierbare Funktion. Elem. der Math. 7, 73–79 (1952)

    MATH  Google Scholar 

  188. T. Yong, Y. Guangjun, Construction of some Kiesswetter-like functions—the continuous but non-differentiable function define by quinary decimal.Anal. Theory Appl. 20, 58–68 (2004)

    Article  MathSciNet  Google Scholar 

  189. T. Yong, Construction and generalization of a class of Kiesswetter-like functions. J. Kunming Univ. Sci. Technol. 35, 104–110 (2010)

    Google Scholar 

  190. G.C. Young, On infinite derivates. Q. J. Pure Appl. Math. 47, 127–175 (1916)

    MATH  Google Scholar 

  191. G.C. Young, On the derivates of a function. Lond. M. S. Proc. 15, 360–384 (1916)

    MathSciNet  MATH  Google Scholar 

  192. L. Zajiček, Porosity and σ-porosity. Real Anal. Exch. 13, 314–350 (1987)

    MathSciNet  MATH  Google Scholar 

  193. L. Zajiček, On σ-porous sets in abstract spaces. Abstr. Appl. Anal. 2005(5), 309–334 (2005)

    Article  MathSciNet  Google Scholar 

  194. A. Zygmund, Trigonometric Series (Cambridge University Press, Cambridge, 2002)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Jarnicki, M., Pflug, P. (2015). Baire Category Approach. In: Continuous Nowhere Differentiable Functions. Springer Monographs in Mathematics. Springer, Cham. https://doi.org/10.1007/978-3-319-12670-8_7

Download citation

Publish with us

Policies and ethics