Weierstrass-Type Functions I

  • Marek Jarnicki
  • Peter Pflug
Part of the Springer Monographs in Mathematics book series (SMM)

Summary

The aim of this chapter is to present various classical methods of testing the nowhere differentiability of the Weierstrass-type function \(x\longmapsto \sum _{n=0}^{\infty }a^{n}\cos ^{p}(2\pi b^{n}x +\theta _{n})\). More developed results will be discussed in Chap.  8

References

  1. [BD92]
    A. Baouche, S. Dubuc, La non-dérivabilité de la fonction de Weierstrass. Enseign. Math. 38, 89–94 (1992)MathSciNetMATHGoogle Scholar
  2. [Beh49]
    F.A. Behrend, Some remarks on the construction of continuous non-differentiable functions. Proc. Lond. Math. Soc. 50, 463–481 (1949)MathSciNetMATHGoogle Scholar
  3. [Boa69]
    P. van Emde Boas, Nowhere differentiable continuous functions. Technical Report, Mathematisch Centrum Amsterdam (1969)MATHGoogle Scholar
  4. [BR74]
    P. Bois-Reymond, Versuch einer Classification der willkürlichen Functionen reeller Argumente nach ihren Aenderungen in den kleinsten Intervallen. J. Reine Angew. Math. 79, 21–37 (1874)MathSciNetMATHGoogle Scholar
  5. [Bro08]
    T.J.I’a. Bromwich, An Introduction to the Theory of Infinite Series (Macmillan, London/New York, 1908)Google Scholar
  6. [Cel90]
    M.Ch. Cellérier, Note sur les principes fondamentaux de l’analyse. Darboux Bull. 14, 142–160 (1890)MATHGoogle Scholar
  7. [Din92]
    U. Dini, Grundlagen für eine Theorie der Functionen einer veränderlichen reelen Grösse (B.G. Teubner, Leipzig, 1892)MATHGoogle Scholar
  8. [Har16]
    G.H. Hardy, Weierstrass’s non-differentiable function. Trans. Am. Math. Soc. 17, 301–325 (1916)MathSciNetMATHGoogle Scholar
  9. [Hat88b]
    M. Hata, Singularities of the Weierstrass type functions. J. Anal. Math. 51, 62–90 (1988)MathSciNetCrossRefGoogle Scholar
  10. [Her79]
    K. Hertz, On functions having no differential quotient (Polish). Diary of the Society of Sciences in Paris 11, 1–24 (1879)Google Scholar
  11. [Hob26]
    E.W. Hobson, The Theory of Functions of a Real Variable and the Theory of Fourier Series, vol. II (Cambridge University Press, Cambridge, 1926)MATHGoogle Scholar
  12. [Ler88]
    M. Lerch, Über die Nichtdifferentiirbarkeit gewisser Functionen. J. Math. 103, 126–138 (1888)MATHGoogle Scholar
  13. [Mal09]
    L. Maligranda, Karol Hertz (1843–1904) — absolwent Szkoły Głównej Warszawskiej (Polish). Antiquit. Math. 3, 65–87 (2009)Google Scholar
  14. [Muk34]
    B.N. Mukhopadhyay, On some generalisations of Weierstraß  nondifferentiable functions. Bull. Calcutta M.S. 25, 179–184 (1934)Google Scholar
  15. [Por19]
    M.B. Porter, Derivativeless continuous functions. Bull. Am. Math. Soc. 25, 176–180 (1919)MathSciNetCrossRefGoogle Scholar
  16. [Wei86]
    K. Weierstrass, Abhandlungen aus der Funktionenlehre (Julius Springer, Berlin, 1886)MATHGoogle Scholar
  17. [Wie81]
    C. Wiener, Geometrische und analytische Untersuchung der Weierstrassschen Function. J. Reine Angew. Math. 90, 221–252 (1881)MathSciNetMATHGoogle Scholar
  18. [You16a]
    G.C. Young, On infinite derivates. Q. J. Pure Appl. Math. 47, 127–175 (1916)MATHGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Marek Jarnicki
    • 1
  • Peter Pflug
    • 2
  1. 1.Institute of MathematicsJagiellonian UniversityKrakówPoland
  2. 2.Insitute for MathematicsCarl von Ossietzky University OldenburgOldenburgGermany

Personalised recommendations