• Marek Jarnicki
  • Peter Pflug
Part of the Springer Monographs in Mathematics book series (SMM)


This chapter contains definitions and auxiliary results related to various notions of nowhere differentiability. In particular, in § 2.3, we present a proof of the famous Denjoy–Young–Saks theorem, which may permit the reader to understand better the sense of nowhere differentiability.


  1. [Ban22]
    S. Banach, Sur les fonctions dérivées des fonctions mesurables. Fundam. Math. 3, 128–132 (1922)CrossRefGoogle Scholar
  2. [Den15]
    A. Denjoy, Mémoire sur les nombres dérivés des fonctions continues. J. Math. 1, 105–240 (1915)zbMATHGoogle Scholar
  3. [Din92]
    U. Dini, Grundlagen für eine Theorie der Functionen einer veränderlichen reelen Grösse (B.G. Teubner, Leipzig, 1892)zbMATHGoogle Scholar
  4. [Han34]
    E.H. Hanson, A new proof of a theorem of Denjoy, Young, and Saks. Bull. Am. Math. Soc. 40, 691–694 (1934)MathSciNetCrossRefGoogle Scholar
  5. [KK96]
    R. Kannan, C.K. Krueger, Advanced Analysis on the Real Line (Springer, Berlin, 1996)zbMATHGoogle Scholar
  6. [Sak24]
    S. Saks, Sur les nombres derivées des fonctions. Fundam. Math. 5, 98–104 (1924)CrossRefGoogle Scholar
  7. [Sti14]
    T.J. Stieltjes, Quelques remarques à propos des dérivées d’une fonction d’une seule variable, in Œuvres Complètes de Thomas Jan Stieltjes, vol. I (Groningen, P. Noordhoff, 1914), pp. 67–72Google Scholar
  8. [You16b]
    G.C. Young, On the derivates of a function. Lond. M. S. Proc. 15, 360–384 (1916)MathSciNetzbMATHGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Marek Jarnicki
    • 1
  • Peter Pflug
    • 2
  1. 1.Institute of MathematicsJagiellonian UniversityKrakówPoland
  2. 2.Insitute for MathematicsCarl von Ossietzky University OldenburgOldenburgGermany

Personalised recommendations