Advertisement

RETRACTED CHAPTER: Introduction: A Historical Journey

  • Marek Jarnicki
  • Peter Pflug
Part of the Springer Monographs in Mathematics book series (SMM)

Abstract

The chapter “Introduction: A Historical Journey” published in the book “Continuous Nowhere Differentiable Functions”, pages 1–6, DOI  https://doi.org/10.1007/978-3-319-12670-8_1, has been retracted by the request of the Editor, because portions of the text are duplicated without permission from a previously published article by Adam Kucharski.

References

  1. [Amp06]
    A.M. Ampère, Recherches sur quelques points de la théorie des fonctions dérivées qui condiusent à une nouvelle démonstration de la série de Taylor, et à l’expression finie des termes qu’on néglige lorsqu’on arrête cette série à un terme quelconque. J. École Polytech. 6, 148–181 (1806)Google Scholar
  2. [BB05]
    B. Bailland, H. Bourget, Correspondence d’Hermite et de Stieltjes, vol. 2 (Gauthier–Villas, Paris, 1905)Google Scholar
  3. [Boa69]
    P. van Emde Boas, Nowhere differentiable continuous functions. Technical Report, Mathematisch Centrum Amsterdam (1969)zbMATHGoogle Scholar
  4. [BR74]
    P. Bois-Reymond, Versuch einer Classification der willkürlichen Functionen reeller Argumente nach ihren Aenderungen in den kleinsten Intervallen. J. Reine Angew. Math. 79, 21–37 (1874)MathSciNetzbMATHGoogle Scholar
  5. [Cel90]
    M.Ch. Cellérier, Note sur les principes fondamentaux de l’analyse. Darboux Bull. 14, 142–160 (1890)zbMATHGoogle Scholar
  6. [Dar75]
    G. Darboux, Mémoir sur les fonctions discontinues. Ann. Sci. École Norm. Sup. Sér. 2 4, 57–112 (1875)CrossRefGoogle Scholar
  7. [Dar79]
    G. Darboux, Addition au mémoire sur les fonctions discontinues. Ann. Sci. École Norm. Sup. Sér. 2 8, 195–202 (1879)CrossRefGoogle Scholar
  8. [Din77]
    U. Dini, Su alcune funzioni che in tutto un intervallo non hanno mai derivata. Annali di Matematica 8, 122–137 (1877)zbMATHGoogle Scholar
  9. [Din92]
    U. Dini, Grundlagen für eine Theorie der Functionen einer veränderlichen reelen Grösse (B.G. Teubner, Leipzig, 1892)zbMATHGoogle Scholar
  10. [DS00]
    L. Dirichlet, P.L. Seidel, Die Darstellung ganz willkürlicher Functionen durch Sinus- und Cosinusreihen (Wilhelm Engelmann, Leipzig, 1900)zbMATHGoogle Scholar
  11. [Eul48]
    L. Euler, Introductio in Analysin in Infinitorum (Appud Marcum-Michaelem Bousquet & Socios, Lausanne, 1748)zbMATHGoogle Scholar
  12. [FGK99]
    V.P. Fonf, V.I. Gurariy, M.I. Kadets, An infinite-dimensional subspace of \(\mathcal{C}[0,1]\) consisting of nowhere differentiable functions. C. R. Acad. Bulg. 52, 13–16 (1999)MathSciNetzbMATHGoogle Scholar
  13. [Gur67]
    V.I. Gurariy, Subspaces of differentiable functions in the space of continuous functions (Russian). Funktsii Funktsional. Anal. Prilozhen 4, 161–121 (1967)Google Scholar
  14. [Gur91]
    V.I. Gurariy, Linear spaces composed of everywhere nondifferentiable functions (Russian). C. R. Acad. Bulg. Sci. 44, 13–16 (1991)MathSciNetGoogle Scholar
  15. [Hob26]
    E.W. Hobson, The Theory of Functions of a Real Variable and the Theory of Fourier Series, vol. II (Cambridge University Press, Cambridge, 1926)zbMATHGoogle Scholar
  16. [Jar22]
    V. Jarník, O funkci Bolzanově. Časopis pro pěstování matematiky a fysiky 51, 248–264 (1922)Google Scholar
  17. [Kle02]
    F. Klein, Anwendung der Differential- und Integralrechnung auf Geometrie, eine Revision der Prinzipien (B.G. Teubner, Leipzig, 1902)zbMATHGoogle Scholar
  18. [Kuc14]
    A. Kucharski, Math’s beautiful monsters; how a destructive idea paved the way to modern math. Nautilus Q. (11) (2014)Google Scholar
  19. [Pas14]
    M. Pasch, Veränderliche und Funktion (B.G. Teubner, Leipzig/Berlin, 1914)zbMATHGoogle Scholar
  20. [Per16]
    J.B. Perrin, Atoms (D. van Nostrand Company, 1916)Google Scholar
  21. [Poi99]
    H. Poincaré, La logique et l’intuition dans la sciences mathématique et dans l’enseigment. Enseign. Math. 1, 157–162 (1899)zbMATHGoogle Scholar
  22. [Ryc23]
    K. Rychlik, Eine stetige nicht differenzierbare Funktion im Gebiete der Henselschen Zahlen. J. Math. 152, 178–179 (1923)MathSciNetzbMATHGoogle Scholar
  23. [Sin35]
    A.N. Singh, The theory and construction of non-differentiable functions, in Squaring the Circle and Other Monographs. (Lucknow University Studies, Chelsea Publishing Company) (1935)Google Scholar
  24. [Vol1987]
    K. Volkert, Die Geschichte der pathologischen Funktionen. Ein Beitrag zur Entstehung der mathematischen Methodologie. Arch. Hist. Exact Sci. 37, 193–232 (1987)MathSciNetCrossRefGoogle Scholar
  25. [Vol1989]
    K. Volkert, Zur Differenzierbarkeit stetiger Funktionen — Ampère’s Beweis und seine Folgen. Arch. Hist. Exact Sci. 40, 37–112 (1989)MathSciNetCrossRefGoogle Scholar
  26. [Wei23]
    K. Weierstrass, Briefe von K. Weierstrass an Paul du Bois-Reymond. Acta Math. 39, 199–225 (1923)MathSciNetzbMATHGoogle Scholar
  27. [You16a]
    G.C. Young, On infinite derivates. Q. J. Pure Appl. Math. 47, 127–175 (1916)zbMATHGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Marek Jarnicki
    • 1
  • Peter Pflug
    • 2
  1. 1.Institute of MathematicsJagiellonian UniversityKrakówPoland
  2. 2.Insitute for MathematicsCarl von Ossietzky University OldenburgOldenburgGermany

Personalised recommendations