Skip to main content

Clay Mineralogy

  • Chapter
  • First Online:
Book cover Greenhouse Gases and Clay Minerals

Part of the book series: Green Energy and Technology ((GREEN))

Abstract

When discussing clays, it is important to understand what they are, their origins, their chemical and physical properties, and their crystal structures. Clay minerals, a subgroup of the phyllosilicates, are a major and important type of mineral in the Earth’s crust. Phyllosilicates exist over a crystal-size range from traditional clay-size range to very large crystals. However, in terms of their impact on everyday life, small grain-sized geomaterials are of most importance. Chemical weathering of primary minerals is one of the processes of principal interest when fine-grained crystalline hydrous aluminosilicates are considered. There are a variety of detailed approaches for the orderly classification of clay minerals, which is outside the scope of this work; for simplicity, the two principal layer types and three clay mineral families—kaolin, smectite, and chlorite—are discussed here. Importance of pillared and lateritic (a source of rare-earth elements) clays is also highlighted. While there is no comprehensive nomenclature for mixed-layer clays, statistical treatment of the binary mixed systems can be simplified by assuming three standard sequences: random, ordered, and segregated. The primary analytical tool used to sort out all these structural variations is powder X-ray diffraction. Though the structure of clay will inform many of the physical properties and allows for differentiation of the various clay minerals, substitution into the individual clay layers can alter the base physical properties and provides variation within the clay families. For more precision in clay mineral identification, additional analytical information is required (as further discussed in this book).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Ahn, J. H., & Buseck, P. R. (1990). Layer-stackings equencesa nd structural disorder in mixed-layer illite/smectite: Image simulations and HRTEM imaging. American Mineralogist, 75(3–4), 267–275.

    Google Scholar 

  • Bailey, S. W. (1982). Nomenclature for regular interstratifications. Clay Minerals, 17(2), 243–248.

    Google Scholar 

  • Bailey, S. W. (1984). Reviews in mineralogy, Volume 13: Micas. Chantilly, VA: Mineralogical society of America.

    Google Scholar 

  • Bailey, S. W. (1988). Reviews in mineralogy, Volume 19: Hydrous phyllosilicates (exclusive of Micas). Chantilly, VA: Mineralogical Society of America.

    Google Scholar 

  • Barrer, R. M., & MacLeod, D. M. (1955). Activation of montmorillonite by ion exchange and sorption complexes of tetra-alkyl ammonium montmorillonites. Transactions of the Faraday Society, 51, 1290–1300.

    Google Scholar 

  • Bayliss, P. (1975). Nomenclature of the trioctahedral chlorites. Canadian Mineralogist, 13, 178–180.

    Google Scholar 

  • Bethke, C. M., & Reynolds, R. C. (1986). Recursive method for determining frequency factors in interstratified clay diffraction calculations. Clays and Clay Minerals, 34(2), 224–226.

    Article  Google Scholar 

  • Bethke, C. M., Vergo, N., & Altaner, S. P. (1986). Pathways of smectite illitization. Clays and Clay Minerals, 34(2), 125–135.

    Article  Google Scholar 

  • Brady, N. C., & Weil, R. R. (2010). Elements of the nature and properties of soils (3rd ed.). London: Pearson.

    Google Scholar 

  • Brindley, G. W., & Sempels, R. E. (1977). Preparation and properties of some hydroxy-aluminum beidellites. Clay Minerals, 12(3), 229–237.

    Article  Google Scholar 

  • Brown, G., & Brindley, G. W. (1980). X-ray diffraction procedures for clay mineral identification. In G. Brindley & G. Brown (Eds.), Crystal structures of clay minerals and their X-ray identification (3rd ed., pp. 305–360). London: Mineralogical Society.

    Google Scholar 

  • Dana, E. S., & Ford, W. E. (1941). Dana’s manual of mineralogy (revised by Hurlbut, C. S.) (5th ed.). New York: Wiley.

    Google Scholar 

  • Eberl, D. D. (1984). Clay mineral formation and transformation in rocks and soils [and discussion]. Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical, and Engineering Sciences, 311(517), 241.

    Google Scholar 

  • Evangelou, V. (1998). Environmental soil and water chemistry: Principles and applications (1st ed.). New York: Wiley.

    Google Scholar 

  • Ferrage, E., Lanson, B., Sakharov, B. A., & Drits, V. A. (2005). Investigation of smectite hydration properties by modeling experimental X-ray diffraction patterns: Part I. Montmorillonite Hydration Properties. American Mineralogist, 90(8–9), 1358–1374.

    Google Scholar 

  • Gaines, R. V., et al. (1997). Dana’s new mineralogy (8th ed.). Hoboken: Wiley.

    Google Scholar 

  • Gil, A., Korili, S. A., Trujillano, R., & Vicente, M. A. (Eds.). (2010). Pillared clays and related catalysts. New York: Springer.

    Google Scholar 

  • Guggenheim, S., et al. (2006). Summary of recommendations of nomenclature committees relevant to clay mineralogy: Report of the Association Internationale pour l’Etude des Argiles (AIPEA) Nomenclature Committee for 2006. Clay Minerals, 41(4), 863–877.

    Article  Google Scholar 

  • Hazen, R. M., et al. (2013). Clay mineral evolution. American Mineralogist, 98(11–12), 2007–2029.

    Article  Google Scholar 

  • Klug, H. P., & Alexander, L. E. (1974). X-Ray diffraction procedures: For polycrystalline and amorphous materials (2nd ed.). New York: Wiley.

    Google Scholar 

  • Kynicky, J., Smith, M. P., & Xu, C. (2012). Diversity of rare earth deposits: The key example of China. Elements, 8(5), 361–367.

    Article  Google Scholar 

  • Leupin, O. X., et al. (2014). Montmorillonite stability under near-field conditions. Wettingen, Switzerland: National Cooperative for the Disposal of Radioactive Waste.

    Google Scholar 

  • MacEwan, D. M. C. (1958). Fourier transform methods for studying X-ray scattering from lamellar systems: II. The calculation of X-ray diffraction effects for various types of interstratification. Kolloid-Zeitschrift, 156(1), 61–67.

    Google Scholar 

  • MacEwan, D. M. C., & Wilson, M. J. (1980). Interlayer and intercalation complexes of clay minerals. In G. Brindley & G. Brown (Eds.), Crystal structures of clay minerals and their X-ray identification (3rd ed., pp. 197–248). London: Mineralogical Society.

    Google Scholar 

  • Mackenzie, R. (1962). De natura lutorum. Clays and Clay Minerals, 11(1), 11–28.

    Article  Google Scholar 

  • Mauduyt, L. (1847). Un mot sur un morceau de quartz d'une variété particulière, ainsi que sur une substance minérale trouvée dans le département de la Vienne. Bulletin de la Société Géologique de France, 4, 168–170.

    Google Scholar 

  • Miller, W. H. (1839). A treatise on crystallography (1st ed.). Cambridge, UK: J. & J. J. Deighton.

    Google Scholar 

  • Moore, D. M., & Hower, J. (1986). Ordered interstratifrcation of dehydrated and hydrated Na-montmorillonite. Clays and Clay Minerals, 34(4), 378–384.

    Article  Google Scholar 

  • Moore, D. M., & Reynolds, R. C., Jr. (1997). X-Ray diffraction and the identification and analysis of clay minerals (2nd ed.). New York: Oxford University Press.

    Google Scholar 

  • Murray, H. H. (2000). Traditional and new applications for kaolin, smectite, and palygorskite: A general overview. Applied Clay Science, 17(5), 207–221.

    Article  Google Scholar 

  • Nadeau, P. H., Wilson, M. J., McHardy, W. J., & Tait, J. M. (1984). Interstratified clays as fundamental particles. Clay Minerals, 19(5), 757–769.

    Article  Google Scholar 

  • Potter, M. J. (2001). Vermiculite. In Minerals Yearbook (Vol. 1, pp. 82.1–82.5). Online: U.S. Geological Survey.

    Google Scholar 

  • Reynolds, R. C. (1980). Interstratified clay minerals. In G. Brindley & G. Brown (Eds.), Crystal structures of clay minerals and their X-ray identification (3rd ed., pp. 249–303). London: Mineralogical Society.

    Google Scholar 

  • Reynolds, R. J., & Reynolds, R. I. (1996). NEWMOD for Windows©: The calculation of one-dimensional X-ray diffraction patterns of mixed-layered clay minerals. Available online at: http://www.newmod-for-clays.com/home.html. Accessed 21 June 2017.

  • Ronov, A. B., & Yaroshevsky, A. A. (2013). Chemical composition of the earth’s crust. In P. J. Hart (Ed.), The earth’s crust and upper mantle (geophysical monograph series) (pp. 37–57). Online: American Geophysical Union.

    Chapter  Google Scholar 

  • Srodon, J. (1999). Nature of mixed-layer clays and mechanisms of their formation and alteration. Annual Review of Earth and Planetary Sciences, 27, 19–53.

    Article  Google Scholar 

  • Steudel, A. et al., 2017. Characterization of a fine-grained interstratification of turbostratic talc and saponite. Minerals, 7(1), 5.1–14.

    Google Scholar 

  • Vicente, M. A., Gil, A., & Bergaya, F. (2013). Pillared clays and clay minerals. In F. Bergaya & G. Lagaly (Eds.), Handbook of clay science (2nd ed., pp. 523–557). Amsterdam: Elsevier.

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bret H. Howard .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Cite this chapter

Howard, B.H., Lekse, J.W. (2018). Clay Mineralogy. In: Romanov, V. (eds) Greenhouse Gases and Clay Minerals. Green Energy and Technology. Springer, Cham. https://doi.org/10.1007/978-3-319-12661-6_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-12661-6_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-12660-9

  • Online ISBN: 978-3-319-12661-6

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics