Skip to main content

Greenhouse Gases and Their Role in Climate Change

  • Chapter
  • First Online:
Greenhouse Gases and Clay Minerals

Part of the book series: Green Energy and Technology ((GREEN))

Abstract

The chapter begins with a comprehensive review of the representative greenhouse gases and their role in the Earth’s radiative balance. Eight greenhouse gases (CO2, CH4, N2O, HFC-23, HFC-134a, PFC, SF6, and NF3) and their contributions to radiative heating of the atmosphere are analyzed, and the mechanisms associated with global warming potential are discussed. To illustrate the reported evidence of changes in the radiative balance attributed to greenhouse gases, the correlation between the global temperature rise and the increase in atmospheric concentration of CO2, the most important greenhouse gas, is presented. The primary anthropogenic CO2 emission sources and the amount of CO2 emissions by region, and the disturbance of anthropogenic CO2 emission to global carbon cycle are discussed. At the conclusion of this chapter, a brief review of global actions to mitigate anthropogenic CO2 emissions is presented.

The Sun, with all the planets revolving around it, and depending on it, can still ripen a bunch of grapes as though it had nothing else in the Universe to do.

—Galileo Galilei

The original version of this chapter was revised: Text corrections and Reference link were updated. The erratum to this chapter is available at https://doi.org/10.1007/978-3-319-12661-6_10

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Archer, D. (2010). The global carbon cycle. Princeton, NJ: Princeton University Press.

    Google Scholar 

  • Archer, D., Buffett, B., & Brovkin, V. (2009). Ocean methane hydrates as a slow tipping point in the global carbon cycle. Proceedings of the National Academy of Sciences, 106, 20596–20601.

    Article  Google Scholar 

  • Birat, J. P. (2010). Carbon dioxide (CO2) capture and storage technology in the iron and steel industry. Developments and Innovation in Carbon Dioxide (CO 2 ) Capture and Storage Technology (pp. 492–521). Amsterdam: Elsevier.

    Chapter  Google Scholar 

  • Broecker, W. S., Peteet, D. M., & Rind, D. (1985). Does the ocean-atmosphere system have more than one stable mode of operation? Nature, 315(6014), 21–26.

    Article  Google Scholar 

  • Burwicz, E., Rupke, L. H., & Wallmann, K. (2011). Estimation of the global amount of submarine gas hydrates formed via microbial methane formation based on numerical reaction transport modeling and a novel parameterization of Holocene sedimentation. Geochimica et Cosmochimica Acta, 75(16), 4562–4576.

    Article  Google Scholar 

  • Center for Climate and Energy Solutions. (2015). Climate change 101: International action. Available online at: http://www.c2es.org/publications/climate-change-101/international. Accessed 20 April 2017.

  • Ciais, P., et al. (1997). A three‐dimensional synthesis study of δ18O in atmospheric CO2: 1. Surface fluxes. Journal of Geophysical Research: Atmospheres, 102(D5), pp. 5857–5872.

    Google Scholar 

  • European Commission. (2015). Climate action: Working with international partners. Available online at: https://ec.europa.eu/clima/policies/international_en. Accessed 20 April 2017.

  • Falkowski, P., et al. (2000). The global carbon cycle: A test of our knowledge of earth as a system. Science, 290(5490), pp. 291–296.

    Google Scholar 

  • Field, C. B., & Raupach, M. R. (2004). The global carbon cycle: Integrating humans, climate, and the natural world (Illustrated ed.). Washington, DC: Island Press.

    Google Scholar 

  • GISTEMP Team. (2016). GISS Surface Temperature Analysis (GISTEMP). NASA Goddard Institute for Space Studies. Available online at: http://data.giss.nasa.gov/gistemp/. Accessed 31 January 2016.

  • Global CCS Institute. (2014). The global status of CCS: 2014. Available online at: http://hub.globalccsinstitute.com/publications/global-status-ccs-2014. Accessed 20 April 2017.

  • Hall, D. O., & Rao, K. (1999). Photosynthesis. Cambridge: Cambridge University Press.

    Google Scholar 

  • Halmann, M. M., & Steinberg, M. (1999). Greenhouse gas carbon dioxide mitigation: Science and technology. Boca Raton: Lewis Publishers.

    Google Scholar 

  • Hansen, J., Ruedy, R., Sato, M., & Lo, K. (2010). Global surface temperature change. Reviews of Geophysics, 48(4), p. RG4004.

    Google Scholar 

  • International Energy Agency. (2015). World energy outlook. Available online at: http://www.iea.org/publications/scenariosandprojections/. Accessed 20 April 2017.

  • IPCC. (2007). Climate change 2007: The physical science basis. Working Group I contribution to the fourth assessment report of the Intergovernmental Panel on Climate Change. Cambridge and New York: Cambridge University Press.

    Google Scholar 

  • IPCC. (2013). Climate change 2013: The physical science basis. Contribution of Working Group I to the fifth assessment report of the Intergovernmental Panel on Climate Change. Cambridge and New York: Cambridge University Press.

    Google Scholar 

  • Joos, F., et al. (1999). Global warming and marine carbon cycle feedbacks on future atmospheric CO2. Science, 284(5413), 464–467.

    Google Scholar 

  • Keeling, R. F., Piper, S. C., Bollenbacher, A. F., & Walker, S. J. (2009). Atmospheric CO 2 values (ppmv) derived from in situ air samples collected at Mauna Loa, Hawaii, USA. Available online at: http://cdiac.ornl.gov/ftp/trends/co2/maunaloa.co2. Accessed 20 April 2017.

  • Kiehl, J. T., & Trenberth, K. E. (1997). Earth’s annual global mean energy budget. Bulletin of the American Meteorological Society, 78(2), 197–208.

    Article  Google Scholar 

  • Kleypas, J. A., et al. (1999). Geochemical consequences of increased atmospheric carbon dioxide on coral reefs. Science, 284(5411), 118–120.

    Article  Google Scholar 

  • Langdon, C., et al. (2000). Effect of calcium carbonate saturation state on the calcification rate of an experimental coral reef. Global Biogeochemical Cycles, 14(2), 639–654.

    Article  Google Scholar 

  • Marini, L. (2007). Geological sequestration of carbon dioxide: Thermodynamics, kinetics, and reaction path modeling. Amsterdam: Elsevier.

    Google Scholar 

  • Mohr, H., & Schopfer, P. (1995). Plant Physiology. Berlin: Springer-Verlag Publishing.

    Google Scholar 

  • NASA. (2014). Wikipedia: Earth’s energy budget. Available online at: https://en.wikipedia.org/wiki/Earth%27s_energy_budget. Accessed 19 April 2017.

  • NASA. (2016a). Surface energy budget. Available online at: https://www.earthobservatory.nasa.gov/Features/EnergyBalance/page5.php. Accessed 21 April 2017.

  • NASA. (2016b). The atmosphere’s energy budget. Available online at: https://www.earthobservatory.nasa.gov/Features/EnergyBalance/page6.php. Accessed 21 April 2017.

  • NASA. (2016c). Climate change: How do we know? Available online at: https://climate.nasa.gov/evidence/. Accessed 21 April 2017.

  • National Oceanic & Atmospheric Administration. (2015). NOAA—Carbon cycle science. Available online at: https://www.esrl.noaa.gov/research/themes/carbon/. Accessed 21 April 2017.

  • National Oceanic & Atmospheric Administration. (2016a). NOAA—What is ocean acidification? Available online at: https://www.pmel.noaa.gov/co2/story/What+is+Ocean+Acidification%3F. Accessed 21 April 2017.

  • National Oceanic & Atmospheric Administration. (2016b). NOAA—Up-to-date weekly average CO2 at Mauna Loa. Available online at: https://www.esrl.noaa.gov/gmd/ccgg/trends/weekly.html. Accessed 21 April 2017.

  • OECD. (2015). Environment at a glance 2015: OECD indicators. Paris: OECD Publishing.

    Google Scholar 

  • Plucinska, J. (2015, 1 October). India pledges to reduce carbon emissions 33%-35% by 2030. Time.

    Google Scholar 

  • Post, W. M., et al. (1990). The global carbon cycle. American Scientist, 78(4), 310–326.

    Google Scholar 

  • Prentice, I. C., et al. (2001). The carbon cycle and atmospheric carbon dioxide. In J. Houghton et al. (Eds.), Climate change 2001: The scientific basis (pp. 183–238). Cambridge and New York: Cambridge University Press.

    Google Scholar 

  • Raupach, M. R., et al. (2007). Global and regional drivers of accelerating CO2 emissions. Proceedings of the National Academy of Sciences of the United States of America, 104(24), 10288–10293.

    Google Scholar 

  • Richardson, K., Steffen, W., & Liverman, D. (2011). Climate change: Global risks, challenges and decisions. New York: Cambridge University Press.

    Google Scholar 

  • Rosenthal, E. (2007, 20 June). China overtakes U.S. in greenhouse gas emissions. The New York Times.

    Google Scholar 

  • Sabine, C. L., et al. (2004). Current status and past trends of the global carbon cycle. In C. B. Field & M. R. Raupach (Eds.), The global carbon cycle: Integrating humans, climate, and the natural world (Illustrated ed., pp. 17–44). Washigton, DC: Island Press.

    Google Scholar 

  • The White House. (2014). Fact sheet: U.S.-China joint announcement on climate change and clean energy cooperation. Available online at: https://obamawhitehouse.archives.gov/the-press-office/2014/11/11/fact-sheet-us-china-joint-announcement-climate-change-and-clean-energy-c. Accessed 21 April 2017.

  • U.S. Department of Energy. (2015). Carbon storage atlas (5th ed.). Washington, DC: U.S. Department of Energy.

    Google Scholar 

  • U.S. Energy Information Administration. (2011). EIA—Emissions of greenhouse gases in the U.S.. Available online at: https://www.eia.gov/environment/emissions/ghg_report/ghg_overview.cfm. Accessed 20 April 2017.

  • U.S. Environmental Protection Agency. (2015). Learn about carbon pollution from power plants. Available online at: https://archive.epa.gov/epa/cleanpowerplan/learn-about-carbon-pollution-power-plants.html. Accessed 21 April 2017.

  • U.S. Environmental Protection Agency. (2016). Greenhouse gas emissions: overview of greenhouse gases. Available online at: https://www.epa.gov/ghgemissions/overview-greenhouse-gases. Accessed 21 April 2017.

  • White, C. M., et al. (2003). Separation and capture of CO2 from large stationary sources and sequestration in geological formations—coalbeds and deep saline aquifers. Journal of the Air and Waste Management Association, 53(6), 645–715.

    Google Scholar 

  • Wigley, T. M. L., & Schimel, D. S. (Eds.). (2005). The carbon cycle. Cambridge : Cambridge University Press.

    Google Scholar 

  • Williams, R. G., & Follows, M. J. (2011). Ocean dynamics and the carbon cycle: Principles and mechanisms. New York: Cambridge University Press.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert Dilmore .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Cite this chapter

Dilmore, R., Zhang, L. (2018). Greenhouse Gases and Their Role in Climate Change. In: Romanov, V. (eds) Greenhouse Gases and Clay Minerals. Green Energy and Technology. Springer, Cham. https://doi.org/10.1007/978-3-319-12661-6_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-12661-6_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-12660-9

  • Online ISBN: 978-3-319-12661-6

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics