G-Stream: Growing Neural Gas over Data Stream

  • Mohammed Ghesmoune
  • Hanene Azzag
  • Mustapha Lebbah
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8834)


Streaming data clustering is becoming the most efficient way to cluster a very large data set. In this paper we present a new approach, called G-Stream, for topological clustering of evolving data streams. G-Stream allows one to discover clusters of arbitrary shape without any assumption on the number of clusters and by making one pass over the data. The topological structure is represented by a graph wherein each node represents a set of “close” data points and neighboring nodes are connected by edges. The use of the reservoir, to hold, temporarily, the very distant data points from the current prototypes, avoids needless movements of the nearest nodes to data points and therefore, improving the quality of clustering. The performance of the proposed algorithm is evaluated on both synthetic and real-world data sets.


Data Stream Clustering Topological Structure Growing Neural Gas 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Ackermann, M.R., Märtens, M., Raupach, C., Swierkot, K., Lammersen, C., Sohler, C.: Streamkm++: A clustering algorithm for data streams. ACM Journal of Experimental Algorithmics 17(1) (2012)Google Scholar
  2. 2.
    Aggarwal, C.C., Watson, T.J., Ctr, R., Han, J., Wang, J., Yu, P.S.: A framework for clustering evolving data streams. In: VLDB, pp. 81–92 (2003)Google Scholar
  3. 3.
    de Andrade Silva, J., Faria, E.R., Barros, R.C., Hruschka, E.R., de Carvalho, A.C.P.L.F., Gama, J.: Data stream clustering: A survey. ACM Comput. Surv. 46(1), 13 (2013)Google Scholar
  4. 4.
    Bache, K., Lichman, M.: UCI machine learning repository (2013),
  5. 5.
    Bouguelia, M.R., Belaïd, Y., Belaïd, A.: An adaptive incremental clustering method based on the growing neural gas algorithm. In: ICPRAM, pp. 42–49 (2013)Google Scholar
  6. 6.
    Cao, F., Ester, M., Qian, W., Zhou, A.: Density-based clustering over an evolving data stream with noise. In: SDM, pp. 328–339 (2006)Google Scholar
  7. 7.
    Fritzke, B.: A growing neural gas network learns topologies. In: NIPS, pp. 625–632 (1994)Google Scholar
  8. 8.
    Isaksson, C., Dunham, M.H., Hahsler, M.: SOStream: Self organizing density-based clustering over data stream. In: Perner, P. (ed.) MLDM 2012. LNCS (LNAI), vol. 7376, pp. 264–278. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  9. 9.
    Kohonen, T., Schroeder, M.R., Huang, T.S. (eds.): Self-Organizing Maps, 3rd edn. Springer-Verlag New York, Inc., Secaucus (2001)Google Scholar
  10. 10.
    Martinetz, T., Schulten, K.: A “Neural-Gas” Network Learns Topologies. In: Artificial Neural Networks I, pp. 397–402 (1991)Google Scholar
  11. 11.
    Strehl, A., Ghosh, J.: Cluster ensembles — a knowledge reuse framework for combining multiple partitions. Journal of Machine Learning Research 3, 583–617 (2002)MathSciNetGoogle Scholar
  12. 12.
    Udommanetanakit, K., Rakthanmanon, T., Waiyamai, K.: E-stream: Evolution-based technique for stream clustering. In: Alhajj, R., Gao, H., Li, X., Li, J., Zaïane, O.R. (eds.) ADMA 2007. LNCS(LNAI), vol. 4632, pp. 605–615. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  13. 13.
    Zhang, T., Ramakrishnan, R., Livny, M.: Birch: An efficient data clustering method for very large databases. In: SIGMOD Conference, pp. 103–114 (1996)Google Scholar
  14. 14.
    Zhang, X., Furtlehner, C., Sebag, M.: Data streaming with affinity propagation. In: Daelemans, W., Goethals, B., Morik, K. (eds.) ECML PKDD 2008, Part II. LNCS (LNAI), vol. 5212, pp. 628–643. Springer, Heidelberg (2008)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Mohammed Ghesmoune
    • 1
  • Hanene Azzag
    • 1
  • Mustapha Lebbah
    • 1
  1. 1.University of Paris 13, Sorbonne Paris City LIPN-UMR 7030 - CNRSVilletaneuseFrance

Personalised recommendations