Structural Model-Based Correction of Thermo-elastic Machine Tool Errors

  • Xaver ThiemEmail author
  • Knut Großmann
  • Andreas Mühl
Part of the Lecture Notes in Production Engineering book series (LNPE)


With the load data collected in a machine tool control, the resultant thermally induced error at the tool center point (TCP) can be concluded by means of the thermal and thermo-elastic simulation models derived from the machine tool structure, while the machining accuracy can be increased upon correction of this error. This paper provides an overview of the software modules required to implement the structural model-based correction. The main modules are detailed in terms of their characteristics (such as interfaces and cycle times). The concrete implementation of the communication interface between the control core and the model level is briefly demonstrated for the Beckhoff TwinCAT3 control and the simulation software Matlab.


Machine Tool Shared Memory Power Dissipation Load Data Ball Screw 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Brecher C, Wissmann A (2009) Modelling of thermal behavior of a milling machine due to spindle load. In: Proceedings of the 12th CIRP conference on modeling of machining operations, vol 2, San Sebastian, 7–8 May 2009Google Scholar
  2. Denkena B, Scharschmidt K-H (2009) Modellbasierte Temperaturkompensation für Werkzeugmaschinen. ZWF 104(9):698–702Google Scholar
  3. Großmann K (2009) MAX – Versuchsträger für eine Hochgeschwindigkeits-Leichtbau-Genauigkeitsmaschine. In: Großmann K (ed) Lineardirektantriebe in Werkzeugmaschinen, Dresden, 2009Google Scholar
  4. Großmann K (2012) Thermo-Energetische Gestaltung von Werkzeugmaschinen. ZWF 107(5):307–314Google Scholar
  5. Großmann K, Jungnickel G, Kauschinger B, Mühl A, Rehn S (2011) Prozessaktuelle strukturmodellbasierte Korrektur thermoelastischer Fehler. In: Conference proceedings of the 1. colloquium of the CRC/Transregio96, Dresden, 28–29 Nov 2011Google Scholar
  6. Großmann K, Galant A, Mühl A (2012a) Effiziente Simulation durch Modellordnungsreduktion. ZWF 107(6):457–461Google Scholar
  7. Großmann K, Städel C, Galant A, Mühl A (2012b) Berechnung von Temperaturfeldern an Werkzeugmaschinen. ZWF 107(6):452–456Google Scholar
  8. Großmann K, Städel C, Mühl A (2013) Simulative Erweiterung der Datenbasis zur korrelativen Korrektur thermoelastischer Verformungen. In: Großmann K (ed) Tradition und Gegenwart bei der Analyse des thermischen Verhaltens spanender Werkzeugmaschinen, Dresden, 2013Google Scholar
  9. Scharschmidt K-H (2011) Model-based method for compensation of thermal deformations of machine tools. Dissertation, IFW Leibniz Universität HannoverGoogle Scholar
  10. Wu H, Li G, Shi D (2006) Fuzzy logic thermal error compensation for computer numerical control noncircular turning system. In: International conference on automation, robotics and computer vision, Singapore, 5–8 Dec 2006Google Scholar
  11. Wu C-W, Tang C-H, Chang C-F, Shiao Y-S (2011) Thermal error compensation method for machine center. Int J Adv Manuf Technol 59:681–689CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.Faculty of Mechanical Engineering, Institute for Machine Tools and Control EngineeringTechnical University DresdenDresdenGermany

Personalised recommendations