Advertisement

Adjustment of Uncertain Parameters in Thermal Models of Machine Tools

  • Bernd Kauschinger
  • Klaus Kabitzsch
  • Steffen SchroederEmail author
Chapter
Part of the Lecture Notes in Production Engineering book series (LNPE)

Abstract

Thermal models of machine tools contain parameters that represent machine-specific and time-variable properties. In the design process, these parameters cannot be estimated with sufficient accuracy. Thus, they have to be adjusted by measurements. At present, substantial time, effort and expensive measurement equipment are required for adjustment, as well as in-depth expertise. Consequently, the goal is to develop cost efficient methods for rapid and comprehensive adjustment. This is to be achieved using a systematic strategy for the support and automation of adjustment processes. The strategy is demonstrated based on a thermal model of a bearing assembly.

Keywords

Machine Tool Parameter Adjustment Power Loss Load Case Thermal Model 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Bäumler St, Brecher C, Haber D, Rossaint J, Großmann K, Kauschinger B, Schroeder St (2012) Simulation der Erwärmung von Spindellagern auf der Basis eines lokalen Reibmodells. 2. Kolloqium zum SFB/TR-96 Thermo-Energetische Gestaltung von Werkzeugmaschinen, Chemnitz, 24–25 Oct 2012Google Scholar
  2. Davidon WC (1991) Variable metric method for minimization. SI-OPT 1(1):1–17CrossRefzbMATHMathSciNetGoogle Scholar
  3. Dementjev A, Ribbecke H-D (2011) Improvement of prediction performance in virtual metrology. In: Proceedings of the 11th European AEC/APC conference. Dresden, pp 71–76Google Scholar
  4. Dibowski H (2013) Semantischer Gerätebeschreibungsansatz für einen automatisierten Entwurf von Raumautomationssystemen. Dissertation, TU DresdenGoogle Scholar
  5. Dibowski H, Kabitzsch K (2011) Ontology-based device descriptions and device repository for building automation devices. EURASIP J Embed Syst 2011:Article ID 623461Google Scholar
  6. Dibowski H, Kabitzsch K, Ploennigs J (2010) Automated design of build-ing automation systems. IEEE Trans Ind Electron 57:3606–3613CrossRefGoogle Scholar
  7. Fritz F (2011) Modellierung von Wälzlagern als generische Maschinenelemente einer Mehrkörpersimulation. Dissertation, Karlsruher Institut für TechnologieGoogle Scholar
  8. Großmann K (2012) Thermo-Energetische Gestaltung von Werkzeugmaschinen – Eine Übersicht zu Zielen und Vorgehen im SFB/Transregio 96. ZWF Zeitschrift für wirtschaftlichen Fabrikbetrieb 107:307–314Google Scholar
  9. Großmann K, Jungnickel G (1998) Das thermische Verhalten veränderlicher Strukturen. Konstruktion 50:27–31Google Scholar
  10. Großmann K, Jungnickel G (2003) Instationäres thermoelastisches Verhalten von Vorschubachsen mit bewegtem WälzkontaktGoogle Scholar
  11. Großmann K, Jungnickel G (2006) Prozessgerechte Bewertung des thermischen Verhaltens von WerkzeugmaschinenGoogle Scholar
  12. Großmann K, Jungnickel G Korrektur thermisch bedingter Fehler an Werkzeugmaschinen mit flexibler Arbeitsraum-Konfiguration. Tagungsband zur CPK 2001Google Scholar
  13. Jedrzejewski J, Kwasny W, Potrykus J (1989) Beurteilung der Berechnungsmethoden für die Bestimmung der Energieverluste in Wälzlagern. Schmierungstechnik 20(8):243–244Google Scholar
  14. Kubin H, Benesch M, Dementjev A, Kabitzsch K, Unkelbach T, Nyderle R, Metzner C (2009) ADM; process identification tool for experts and technologists. In: 35th Annual conference of IEEE industrial electronics, 2009, IECON ‘09, pp 1444–1449Google Scholar
  15. Marquardt D (1963) An algorithm for least-squares estimation of nonlinear parameters. J Soc Ind Appl Math 11:431–441. doi: 10.1137/0111030 CrossRefzbMATHMathSciNetGoogle Scholar
  16. Nachimowicz J, Jabrzykowski M (2012) Performance evaluation of rolling element bearings based on tribological behaviour. In: Performance evaluation of bearings. doi: 10.5772/51144
  17. Özlük AC (2013) Design space exploration for building automation systems. PhD. dissertation, TU DresdenGoogle Scholar
  18. Palmgren A (1964) Grundlagen der Wälzlagertechnik, 3rd edn. Franckh’sche Verlagshandlung, StuttgartGoogle Scholar
  19. Ryssel U, Distel F, Borchmann D (2011) Fast computation of proper premises. In: Proceedings of the 8th international conference on concept lattices and their applications. Nancy, France, pp 101–113Google Scholar
  20. Schaeffler Technologies (2012) Technische GrundlagenGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Bernd Kauschinger
    • 1
  • Klaus Kabitzsch
    • 2
  • Steffen Schroeder
    • 1
    Email author
  1. 1.Faculty of Mechanical Engineering, Institute for Machine Tools and Control EngineeringTechnical University DresdenDresdenGermany
  2. 2.Faculty of Computer Science, Institute for Technical Information SystemsTechnical University DresdenDresdenGermany

Personalised recommendations