Skip to main content

Opto-mechanical Design of a Biaxial Elastic Lidar Prototype

  • Chapter
  • First Online:
  • 1095 Accesses

Part of the book series: Springer Theses ((Springer Theses))

Abstract

This chapter describes an eye-safe divided lens biaxial elastic lidar ceilometer prototype, as well as the considerations that were involved in its design.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Federal Aviation Administration (FAA), Automated weather observing systems (AWOS) for non-federal applications, advisory circular 150/5220-16D, FAA, United States Department of Transportation, Technical Report 2011

    Google Scholar 

  2. BSI, BS EN 60825–1:2007, Safety of laser products-Part 1: Equipment classification and requirements, BSI Std. (2007)

    Google Scholar 

  3. J. Kallio, U.S. Patent 7,428,041, 23 Sept 2008

    Google Scholar 

  4. E. Gregorio, Design methodology of a ceilometer lidar prototype, in Proceedings of the IEEE International Geoscience and Remote Sensing Symposium (2007), pp. 3162–3165

    Google Scholar 

  5. E. Gregorio, F. Rocadenbosch, J. Tiana-Alsina, A. Comern, R. Sanz, J. R. Rosell-Polo, Parameter design of a biaxial lidar ceilometer. J. Appl. Remote Sens. 6(1), 063 546-1-063 546–19 (2012)

    Google Scholar 

  6. G. Gimmestad, D. Roberts, J. Stewart, L.I.D.A.R. Engineering Short Course Notes. Georgia Institute of Technology, Atlanta (2007)

    Google Scholar 

  7. C. Münkel and J. Räsänen, in New Optical Concept for Commercial Lidar Ceilometers Scanning the Boundary Layer, ed. by A. Comeron, M.R. Carleer, R.H. Picard, N.I. Sifakis, SPIE, vol. 5571, issue(1), pp. 364–374

    Google Scholar 

  8. J. He, W. Liu, Y. Zhang, R. Kan, Z. Chen, J. Ruan, Atomosphere boundary layer height determination and observation from ceilometer measurements over Hefei during the total solar on July 22, eclipse. Chin. Opt. Lett. 8(5), 439–442 (2009)

    Google Scholar 

  9. G. Martucci, C. Milroy, and C. D. ODowd, Detection of cloud-base height using Jenoptik CHM15k and Vaisala CL31 ceilometers. J. Atmos. Oceanic Technol. 27(2), 305–318 (2010)

    Google Scholar 

  10. R. N. Clark, Manual of Remote Sensing, Volume 3, Remote Sensing for the Earth Sciences. Chapter 1: Spectroscopy of Rocks and Minerals, and Principles of Spectroscopy (Wiley, New York, 1999), pp. 3–58

    Google Scholar 

  11. Oriel Instruments. Introduction to solar radiation. Oriel instruments, a Newport Corporation Brand (2012), http://www.newport.com/Introduction-to-Solar-Radiation/411919/1033/content.aspx

  12. Y. Saito, H. Kurata, H. Kurushima, F. Kobayashi, T. Kawahara, A. Nomura, T. Maruyama, M. Tanaka, Experimental discussion on eye-safe 1.54 m photon counting lidar using avalanche photodiode. Opt. Rev. 11, 378–384 (2004). doi:10.1007/s10043-004-0378-7

  13. L. Matthies, P. Bellutta, and M. Mchenry, Detecting water hazards for autonomous off-road navigation, in Proceedings of SPIE Conference 5083: Unmanned Ground Vehicle Technology V (2003), pp. 263–352

    Google Scholar 

  14. L. Sauvage, S. Lolli, B. Guinot, and M. Lardier, New eye safe autonomous EZ lidar for pollution and meteorological continuous monitoring, in World Meteorological Organization (WMO) Technical Conference on Meterological and Environmental Instruments and Methods of Observation (2008)

    Google Scholar 

  15. P. Rainbow, “3JMTTFestimate", Laser Components (Unpublished, GmbH, August 2005)

    Google Scholar 

  16. R. Paschotta, Avalanche Photodiodes. RP Photonics Encyclopedia of Laser Physics and Technology (RP Photonics Consulting, GmbH, 2012). http://www.rp-photonics.com/avalanche_photodiodes.html

  17. Andover Corporation (2012), http://www.andovercorp.com/Web_store/General_info/Technical.php

  18. American Society for Testing and Materials (ASTM). Terrestrial reference spectra for photovoltaic performance, http://rredc.nrel.gov/solar/spectra/am1.5/ASTMG173/ASTMG173.html

  19. Lambda Research. OSLO: Optics Software for Layout and Optimization (2012). http://lambdares.com/oslo (August, 2014)

  20. Taylor Hobson. Optics PGI surface profilers (2012), http://www.taylor-hobson.com/products/10/64.html#PGI-Dimension2 (August, 2014)

  21. The Mathworks, Inc. MATLAB: The language of technical computing (2012), http://www.mathworks.co.uk/products/matlab/

  22. G. Elert, Thermal expansion. The Physics Hypertextbook (2012), http://physics.info/expansion/

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joshua D. Vande Hey .

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Vande Hey, J.D. (2015). Opto-mechanical Design of a Biaxial Elastic Lidar Prototype. In: A Novel Lidar Ceilometer. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-319-12613-5_3

Download citation

Publish with us

Policies and ethics