Advertisement

Automatic Contrast Parameter Estimation in Anisotropic Diffusion for Image Restoration

  • V. B. Surya PrasathEmail author
  • Radhakrishnan Delhibabu
Conference paper
Part of the Communications in Computer and Information Science book series (CCIS, volume 436)

Abstract

Anisotropic diffusion is used widely in image processing for edge preserving filtering and image smoothing tasks. One of the important class of such model is by Perona and Malik (PM) who used a gradient based diffusion to drive smoothing along edges and not across it. The contrast parameter used in the PM method needs to be carefully chosen to obtain optimal denoising results. Here we consider a local histogram based cumulative distribution approach for selecting this parameter in a data adaptive way so as to avoid manual tuning. We use spatial smoothing based diffusion coefficient along with adaptive contrast parameter estimation for obtaining better edge maps. Moreover, experimental results indicate that this adaptive scheme performs well for a variety of noisy images and comparison results indicate we obtain better peak signal to noise ratio and structural similarity scores with respect to fixed constant parameter values.

Keywords

Image restoration Anisotropic diffusion Contrast parameter Local histogram Denoising 

References

  1. 1.
    Aubert, G., Kornprobst, P.: Mathematical problems in image processing: Partial differential equation and calculus of variations. Applied Mathematical Sciences, vol. 147, 2nd edn. Springer-Verlag, New York (2006)Google Scholar
  2. 2.
    Perona, P., Malik, J.: Scale-space and edge detection using anisotropic diffusion. IEEE Trans. Pattern Anal. Mach. Intell. 12(7), 629–639 (1990)CrossRefGoogle Scholar
  3. 3.
    Prasath, V.B.S., Singh, A.: A hybrid convex variational model for image restoration. Appl. Math. Comput. 215(10), 3655–3664 (2010)CrossRefzbMATHMathSciNetGoogle Scholar
  4. 4.
    Prasath, V.B.S.: A well-posed multiscale regularization scheme for digital image denoising. Int. J. Appl. Math. Comput. Sci. 21(4), 769–777 (2011)CrossRefzbMATHMathSciNetGoogle Scholar
  5. 5.
    Prasath, V.B.S., Singh, A.: An adaptive anisotropic diffusion scheme for image restoration and selective smoothing. Int. J. Appl. Math. Comput. Sci. 12(1), 1–18 (2012)Google Scholar
  6. 6.
    Catte, V., Lions, P.L., Morel, J.M., Coll, T.: Image selective smoothing and edge detection by nonlinear diffusion. SIAM J. Numer. Anal. 29(1), 182–193 (1992)CrossRefzbMATHMathSciNetGoogle Scholar
  7. 7.
    Prasath, V.B.S., Singh, A.: Well-posed inhomogeneous nonlinear diffusion scheme for digital image denoising. J. Appl. Math. 2010, 1–14 (2010). Article ID 763847CrossRefGoogle Scholar
  8. 8.
    Prasath, V.B.S., Vorotnikov, D.: Weighted and well-balanced anisotropic diffusion scheme for image denoising and restoration. Nonlinear Anal.: Real World Appl. 17, 33–46 (2013)CrossRefGoogle Scholar
  9. 9.
    Prasath, V.B.S., Vorotnikov, D.: On a system of adaptive coupled PDEs for image restoration. J. Math. Imaging Vis. 48(1), 35–52 (2014). arXiv:1112.2904 CrossRefzbMATHMathSciNetGoogle Scholar
  10. 10.
    Prasath, V.B.S., Palaniappan, K., Seetharaman, G.: Multichannel texture image segmentation using weighted feature fitting based variational active contours. In: Eighth Indian Conference on Vision, Graphics and Image Processing (ICVGIP), Mumbai, India, December 2012Google Scholar
  11. 11.
    Prasath, V.B.S., Moreno, J.C.: On convergent finite difference schemes for varitional - PDE based image processing. Technical report, ArXiv (2013). http://arxiv.org/abs/1310.7443
  12. 12.
    Canny, J.F.: A computational approach to edge detection. IEEE Trans. Pattern Anal. Mach. Intell. 8(6), 679–698 (1986)CrossRefGoogle Scholar
  13. 13.
    Wang, Z., Bovik, A.C., Sheikh, H.R., Simoncelli, E.P.: Image quality assessment: from error visibility to structural similarity. IEEE Trans. Image Process. 13(4), 600–612 (2004)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  1. 1.University of MissouriColumbiaUSA
  2. 2.Informatik 5, KBSG, RWTH AachenAachenGermany

Personalised recommendations