Advertisement

Review of Relation Extraction Methods: What Is New Out There?

  • Natalia KonstantinovaEmail author
Conference paper
Part of the Communications in Computer and Information Science book series (CCIS, volume 436)

Abstract

Relation extraction is a part of Information Extraction and an established task in Natural Language Processing. This paper presents an overview of the main directions of research and recent advances in the field. It reviews various techniques used for relation extraction including knowledge-based, supervised and self-supervised methods. We also mention applications of relation extraction and identify current trends in the way the field is developing.

Keywords

Relation extraction Information extraction Natural language processing Review 

References

  1. Agrawal, R., Imieliński, T., Swami, A.: Mining association rules between sets of items in large databases. In: Proceedings of the 1993 ACM SIGMOD International Conference on Management of Data, SIGMOD ’93, pp. 207–216. ACM, New York (1993)Google Scholar
  2. Andersen, P.M., Hayes, P.J., Huettner, A.K., Schmandt, L.M., Nirenburg, I.B., Weinstein, S.P.: Automatic extraction of facts from press releases to generate news stories. In: Proceedings of the Third Conference on Applied Natural Language Processing, pp. 170–177 (1992)Google Scholar
  3. Auer, S., Bizer, C., Kobilarov, G., Lehmann, J., Cyganiak, R., Ives, Z.G.: DBpedia: a nucleus for a web of open data. In: Aberer, K., Choi, K.-S., Noy, N., Allemang, D., Lee, K.-I., Nixon, L.J.B., Golbeck, J., Mika, P., Maynard, D., Mizoguchi, R., Schreiber, G., Cudré-Mauroux, P. (eds.) ASWC 2007 and ISWC 2007. LNCS, vol. 4825, pp. 722–735. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  4. Banko, M., Etzioni, O.: The tradeoffs between open and traditional relation extraction. In: Proceedings of ACL-08: HLT, pp. 28–36 (2008)Google Scholar
  5. Banko, M., Cafarella, M.J., Soderland, S., Broadhead, M., Etzioni, O.: Open information extraction from the web. In: Veloso, M.M. (ed.) Proceedings of the 20th International Joint Conference on Artificial Intelligence, Hyderabad, India, pp. 2670–2676 (2007)Google Scholar
  6. Blei, D.M., Ng, A.Y., Jordan, M.I.: Latent dirichlet allocation. J. Mach. Learn. Res. 3, 993–1022 (2003)zbMATHGoogle Scholar
  7. Bollacker, K., Evans, C., Paritosh, P., Sturge, T., Taylor, J.: Freebase: a collaboratively created graph database for structuring human knowledge. In: Proceedings of the 2008 ACM SIGMOD International Conference on Management of Data, SIGMOD ’08, pp. 1247–1250. ACM, New York (2008)Google Scholar
  8. Brin, S.: Extracting patterns and relations from the world wide web. In: Proceedings of the First International Workshop on the Web and Databases, pp. 172–183 (1998)Google Scholar
  9. Bunescu, R., Mooney, R.: Subsequence kernels for relation extraction. In: Weiss, Y., Schölkopf, B., Platt, J. (eds.) Advances in Neural Information Processing Systems 18, pp. 171–178. MIT Press, Cambridge (2006)Google Scholar
  10. Cergani, E., Miettinen, P.: Discovering relations using matrix factorization methods. In: He, Q., Iyengar, A., Nejdl, W., Pei, J., Rastogi, R. (eds.) CIKM, pp. 1549–1552. ACM (2013)Google Scholar
  11. Collins, M., Dasgupta, S., Schapire, R.E.: A generalization of principal component analysis to the exponential family. In: Leen, T., Dietterich, T., Tresp, V. (eds.) Advances in Neural Information Processing Systems. MIT Press, Cambridge (2001)Google Scholar
  12. Cowie, J., Lehnert, W.: Information extraction. Commun. ACM 39(1), 80–91 (1996)CrossRefGoogle Scholar
  13. Culotta, A., McCallum, A., Betz, J.: Integrating probabilistic extraction models and data mining to discover relations and patterns in text. In: Proceedings of the Main Conference on Human Language Technology Conference of the North American Chapter of the Association of Computational Linguistics, New York, pp. 296–303. Association for Computational Linguistics (2006)Google Scholar
  14. Etzioni, O., Cafarella, M., Downey, D., Popescu, A.M., Shaked, T., Soderland, S., Weld, D.S., Yates, A.: Unsupervised named-entity extraction from the web: an experimental study. Artif. Intell. 165, 91–134 (2005). (Elsevier Science Publishers Ltd., Essex, UK)CrossRefGoogle Scholar
  15. Etzioni, O., Banko, M., Soderland, S., Weld, D.S.: Open information extraction from the web. Commun. ACM 51, 68–74 (2008)CrossRefGoogle Scholar
  16. Fader, A., Soderland, S., Etzioni, O.: Identifying relations for open information extraction. In: Proceedings of EMNLP 2011, UK, Edinburgh (2011)Google Scholar
  17. Finkel, J.R., Manning, C.D., Ng, A.Y.: Solving the problem of cascading errors: approximate bayesian inference for linguistic annotation pipelines. In: Proceedings of the 2006 Conference on Empirical Methods in Natural Language Processing, EMNLP ’06, pp. 618–626. Association for Computational Linguistics, Stroudsburg (2006)Google Scholar
  18. Fukumoto, J., Masui, F., Shimohata, M., Sasaki, M.: Oki electric industry: description of the Oki system as used for MUC-7. In: Proceedings of the 7th Message Understanding Conference (1998)Google Scholar
  19. Garigliano, R., Urbanowicz, A., Nettleton, D.J.: University of Durham: description of the LOLITA system as used in MUC-7. In: Proceedings of the 7th Message Understanding Conference (1998)Google Scholar
  20. Grishman, R.: Information extraction: techniques and challenges. In: Pazienza, M.T. (ed.) SCIE 1997. LNCS, vol. 1299, pp. 10–27. Springer, Heidelberg (1997)CrossRefGoogle Scholar
  21. Grishman, R., Sundheim, B.: Message understanding conference-6: a brief history. In: Proceedings of the 16th Conference on Computational Linguistics, pp. 466–471. Association for Computational Linguistics, Morristown (1996)Google Scholar
  22. Hearst, M.A.: Automatic acquisition of hyponyms from large text corpora. In: Proceedings of the 14th Conference on Computational Linguistics, pp. 539–545. Association for Computational Linguistics, Morristown (1992)Google Scholar
  23. Hoffart, J., Suchanek, F.M., Berberich, K., Lewis-Kelham, E., de Melo, G., Weikum, G.: Yago2: exploring and querying world knowledge in time, space, context, and many languages. In: Proceedings of the 20th International Conference Companion on World Wide Web, WWW ’11, pp. 229–232. ACM, New York (2011)Google Scholar
  24. Hoffmann, R., Zhang, C., Ling, X., Zettlemoyer, L., Weld, D.S.: Knowledge-based weak supervision for information extraction of overlapping relations. In: Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies - Volume 1, HLT ’11, pp. 541–550. Association for Computational Linguistics, Stroudsburg (2011)Google Scholar
  25. Hovy, E., Kozareva, Z., Riloff, E.: Toward completeness in concept extraction and classification. In: EMNLP ’09: Proceedings of the 2009 Conference on Empirical Methods in Natural Language Processing, pp. 948–957. Association for Computational Linguistics, Morristown (2009)Google Scholar
  26. Humphreys, K., Gaizauskas, R., Azzam, S., Huyck, C., Mitchell, B., Cunningham, H., Wilks, Y.: University of Sheffield: description of the LaSIE-II system as used for MUC-7. In: Proceedings of MUC-7 (1998)Google Scholar
  27. Jurafsky, D., Martin, J.H.: Speech and language processing an introduction to natural language processing, computational linguistics, and speech recognition, 2nd edn. Prentice-Hall Inc., Upper Saddle River (2009)Google Scholar
  28. Kambhatla, N.: Combining lexical, syntactic, and semantic features with maximum entropy models for extracting relations. In: Proceedings of the ACL 2004 on Interactive poster and demonstration sessions, p. 22. Association for Computational Linguistics, Morristown (2004)Google Scholar
  29. Koren, Y.: Factorization meets the neighborhood: a multifaceted collaborative filtering model. In: Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD ’08, pp. 426–434. ACM, New York (2008)Google Scholar
  30. Kozareva, Z.: Cause-effect relation learning. In: Workshop Proceedings of TextGraphs-7 on Graph-based Methods for Natural Language Processing, TextGraphs-7 ’12, pp. 39–43. Association for Computational Linguistics, Stroudsburg (2012)Google Scholar
  31. Kozareva, Z., Hovy, E.: Learning arguments and supertypes of semantic relations using recursive patterns. In: Proceedings of the 48th Annual Meeting of the Association for Computational Linguistics, Uppsala, Sweden, pp. 1482–1491. Association for Computational Linguistics (2010)Google Scholar
  32. Kozareva, Z., Riloff, E., Hovy, E.: Semantic class learning from the web with hyponym pattern linkage graphs. In: Proceedings of ACL-08: HLT, Columbus, Ohio, pp. 1048–1056. Association for Computational Linguistics (2008)Google Scholar
  33. Lin, D., Pantel, P.: DIRT - discovery of inference rules from text. In: Proceedings of the Seventh ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD ’01, pp. 323–328. ACM, New York (2001)Google Scholar
  34. Mccallum, A., Jensen, D.: A note on the unification of information extraction and data mining using conditional-probability, relational models. In: Proceedings of the IJCAI-2003 Workshop on Learning Statistical Models from Relational Data (2003)Google Scholar
  35. Miller, S., Fox, H., Ramshaw, L., Weischedel, R.: A novel use of statistical parsing to extract information from text. In: Proceedings of the 1st North American Chapter of the Association for Computational Linguistics Conference, Seattle, Washington, pp. 226–233. Morgan Kaufmann Publishers Inc. (2000)Google Scholar
  36. Mintz, M., Bills, S., Snow, R., Jurafsky, D.: Distant supervision for relation extraction without labeled data. In: Proceedings of the Joint Conference of the 47th Annual Meeting of the ACL and the 4th International Joint Conference on Natural Language Processing of the AFNLP: Volume 2 - Volume 2, ACL ’09, pp. 1003–1011. Association for Computational Linguistics, Stroudsburg (2009)Google Scholar
  37. Nakashole, N., Weikum, G., Suchanek, F.: Patty: a taxonomy of relational patterns with semantic types. In: Proceedings of the 2012 Joint Conference on Empirical Methods in Natural Language Processing and Computational Natural Language Learning, EMNLP-CoNLL ’12, pp. 1135–1145. Association for Computational Linguistics, Stroudsburg (2012a)Google Scholar
  38. Nakashole, N., Weikum, G., Suchanek, F.M.: Discovering and exploring relations on the web. PVLDB 5(12), 1982–1985 (2012b)Google Scholar
  39. Nakashole, N., Weikum, G., Suchanek, F.M.: Discovering semantic relations from the web and organizing them with patty. SIGMOD Rec. 42(2), 29–34 (2013)CrossRefGoogle Scholar
  40. Nastase, V., Strube, M., Boerschinger, B., Zirn, C., Elghafari, A.: Wikinet: a very large scale multi-lingual concept network. In: Calzolari, N., Choukri, K., Maegaard, B., Mariani, J., Odijk, J., Piperidis, S., Rosner, M., Tapias, D. (eds.) LREC. European Language Resources Association (2010)Google Scholar
  41. Nguyen, D.P., Matsuo, Y., Ishizuka, M.: Exploiting syntactic and semantic information for relation extraction from Wikipedia. In: Proceedings of the IJCAI Workshop on Text-Mining and Link- Analysis, TextLink07 (2007a)Google Scholar
  42. Nguyen, D.P., Matsuo, Y., Ishizuka, M.: Relation extraction from Wikipedia using subtree mining. In: Proceedings of the Twenty-Second AAAI Conference on Artificial Intelligence, Vancouver, British Columbia, Canada, pp. 1414–1420. AAAI Press (2007b)Google Scholar
  43. Nguyen, D.P.T., Matsuo, Y., Ishizuka, M.: Subtree mining for relation extraction from Wikipedia. In: Sidner, C.L., Schultz, T., Stone, M., Zhai, C. (eds.) Human Language Technology Conference of the North American Chapter of the Association of Computational Linguistics, Proceedings, Rochester, New York, USA, pp. 125–128. The Association for Computational Linguistics (2007c)Google Scholar
  44. Nickel, M., Tresp, V., Kriegel, H.P.: Factorizing YAGO: scalable machine learning for linked data. In: Proceedings of the 21st International Conference on World Wide Web, WWW ’12, pp. 271–280. ACM, New York (2012)Google Scholar
  45. Paşca, M.: Organizing and searching the world wide web of facts - step two: harnessing the wisdom of the crowds. In: WWW ’07: Proceedings of the 16th International Conference on World Wide Web, pp. 101–110. ACM, New York (2007)Google Scholar
  46. Paşca, M.: Outclassing Wikipedia in open-domain information extraction: weakly-supervised acquisition of attributes over conceptual hierarchies. In: Proceedings of the 12th Conference of the European Chapter of the Association for Computational Linguistics, Athens, Greece, pp. 639–647. Association for Computational Linguistics (2009)Google Scholar
  47. Pasca, M.: Acquisition of categorized named entities for web search. In: Proceedings of the Thirteenth ACM International Conference on Information and Knowledge Management, CIKM ’04, pp. 137–145. ACM, New York (2004)Google Scholar
  48. Ponzetto, S.P., Strube, M.: Deriving a large scale taxonomy from Wikipedia. In: Proceedings of the 22nd Conference on the Advancement of Artificial Intelligence, Vancouver, B.C., Canada, pp. 1440–1445 (2007)Google Scholar
  49. Rendle, S., Freudenthaler, C., Gantner, Z., Schmidt-Thieme, L.: BPR: Bayesian personalized ranking from implicit feedback. In: Proceedings of the Twenty-Fifth Conference on Uncertainty in Artificial Intelligence, UAI ’09, Arlington, Virginia, United States, pp. 452–461. AUAI Press (2009)Google Scholar
  50. Riedel, S., Yao, L., McCallum, A.: Modeling relations and their mentions without labeled text. In: Balcázar, J.L., Bonchi, F., Gionis, A., Sebag, M. (eds.) ECML PKDD 2010, Part III. LNCS, vol. 6323, pp. 148–163. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  51. Riedel, S., Yao, L., McCallum, A., Marlin, B.M.: Relation extraction with matrix factorization and universal schemas. In: Vanderwende, L., III, H.D., Kirchhoff, K. (eds.) HLT-NAACL, pp. 74–84. The Association for Computational Linguistics (2013)Google Scholar
  52. Riloff, E., Jones, R: Learning dictionaries for information extraction by multi-level bootstrapping. In: Proceedings of the Sixteenth National Conference on Artificial Intelligence and the Eleventh Innovative Applications of Artificial Intelligence Conference, Menlo Park, CA, USA, AAAI ’99/IAAI ’99, pp. 474–479. American Association for Artificial Intelligence (1999)Google Scholar
  53. Roth, D., Yih, W.: Global inference for entity and relation identification via a linear programming formulation. In: Getoor, L., Taskar, B. (eds.) Introduction to Statistical Relational Learning. MIT Press, Cambridge (2007)Google Scholar
  54. Singh, S., Riedel, S., Martin, B., Zheng, J., McCallum, A.: Joint inference of entities, relations, and coreference. In: Proceedings of the 3rd Workshop on Automated Knowledge Base Construction (2013)Google Scholar
  55. Srikant, R., Agrawal, R.: Mining sequential patterns: generalizations and performance improvements. In: Apers, P.M.G., Bouzeghoub, M., Gardarin, G. (eds.) EDBT 1996. LNCS, vol. 1057, pp. 3–17. Springer, Heidelberg (1996)Google Scholar
  56. Suchanek, F.M., Kasneci, G., Weikum, G.: YAGO: a core of semantic knowledge. In: Proceedings of WWW-07, pp. 697–706 (2007)Google Scholar
  57. Surdeanu, M., Tibshirani, J., Nallapati, R., Manning, C.D.: Multi-instance multi-label learning for relation extraction. In: Proceedings of the 2012 Joint Conference on Empirical Methods in Natural Language Processing and Computational Natural Language Learning, EMNLP-CoNLL ’12, pp. 455–465. Association for Computational Linguistics, Stroudsburg (2012)Google Scholar
  58. Takamatsu, S., Sato, I., Nakagawa, H.: Reducing wrong labels in distant supervision for relation extraction. In: Proceedings of the 50th Annual Meeting of the Association for Computational Linguistics: Long Papers - Volume 1, ACL ’12, pp. 721–729. Association for Computational Linguistics, Stroudsburg (2012)Google Scholar
  59. Weld, D.S., Wu, F., Adar, E., Amershi, S., Fogarty, J., Hoffmann, R., Patel, K., Skinner, M.: Intelligence in Wikipedia. In: Proceedings of the 23rd AAAI Conference, Chicago, USA (2008)Google Scholar
  60. Wu, F., Weld, D.S.: Open information extraction using Wikipedia. In: Proceedings of the 48th Annual Meeting of the Association for Computational Linguistics, ACL ’10, pp. 118–127. Association for Computational Linguistics, Stroudsburg (2010)Google Scholar
  61. Yao, L., Riedel, S., McCallum, A.: Collective cross-document relation extraction without labelled data. In: EMNLP, pp. 1013–1023. ACL (2010)Google Scholar
  62. Yao, L., Haghighi, A., Riedel, S., McCallum, A.: Structured relation discovery using generative models. In: Proceedings of the Conference on Empirical Methods in Natural Language Processing (EMNLP ’11), pp. 1456–1466 (2011)Google Scholar
  63. Yao, L., Riedel, S., McCallum, A.: Unsupervised relation discovery with sense disambiguation. In: ACL, The Association for Computer Linguistics, pp. 712–720 (2012)Google Scholar
  64. Yao, L., Riedel, S., McCallum, A.: Universal schema for entity type prediction. In: Proceedings of the 3rd Workshop on Automated Knowledge Base Construction (2013)Google Scholar
  65. Zhao, S., Grishman, R.: Extracting relations with integrated information using kernel methods. In: ACL ’05: Proceedings of the 43rd Annual Meeting on Association for Computational Linguistics, pp. 419–426. Association for Computational Linguistics, Morristown (2005)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  1. 1.University of WolverhamptonWolverhamptonUK

Personalised recommendations