Advertisement

Fingerprint Identification Algorithm Based on Delaunay Triangulation and Cylinder Codes

  • Alexander Dremin
  • Mikhail Yu. Khachay
  • Anton LeshkoEmail author
Conference paper
Part of the Communications in Computer and Information Science book series (CCIS, volume 436)

Abstract

A new efficient fingerprint identification algorithm combining a modification of the Delaunay triangulation minutiae-based hashing technique for a model dataset, the Maltonian cylinder coding fingerprint matching method, and MAP-classifier learning procedure is proposed. Numerical experiments prove the robustness of the algorithm w.r.t. small perturbations of minutiae data and the sufficiently high level of natural noising for query fingerprints. Also, performance analysis results with comparison to state-of-the-art ‘Suprema’ identification algorithm are presented.

Keywords

Fingerprint identification Delaunay triangulation Cylinder codes Pattern recognitions 

Notes

Acknowledgement

This research was supported by Russian Scientific Foundation, grant no. 14-11-00109.

References

  1. 1.
    Maltoni, D., Maio, D., Jain, A.K., Prabhakar, S.: Handbook of Fingerprint Recognition. Springer, New York (2005)Google Scholar
  2. 2.
    Bhanu, B., Tan, X.: Computational Algorithms for Fingerprint Recognition. Kluwer Academic Publishers, Boston (2004)CrossRefzbMATHGoogle Scholar
  3. 3.
    Mansukhani, P., Tulyakov, S., Govindaraju, V.: A framework for efficient fingerprint identification using a minutiae tree. IEEE Syst. J. 4(2), 126–137 (2010)CrossRefGoogle Scholar
  4. 4.
    Suprema fingerprint identification algorithm. http://www.supremainc.com/eng/technology/technology_03.php?mark=3
  5. 5.
  6. 6.
    Hong, L., Wan, Y., Jain, A.: Fingerprint image enhancement: Algorithm and performance evaluation. IEEE Trans. Pattern Anal. Mach. Intell. 20(8), 777–789 (1998)CrossRefGoogle Scholar
  7. 7.
    Tico, M., Vehvilainen, M., Saarinen, J.: A method of fingerprint image enhancement based on second directional derivatives. In: IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP), pp. 985–988 (2005)Google Scholar
  8. 8.
    Nilsson, M., Dahl, M., Claesson, I.: Gray-scale image enhancement using the SMQT. In: IEEE International Conference on Image Processing, ICIP 2005, vol. 1, pp. 933–936 (2005)Google Scholar
  9. 9.
    Bartunek, J., Nilsson, M., Nordberg, J., Claesson, I.: Adaptive fingerprint binarization by frequency domain analysis. In: Fortieth Asilomar Conference on Signals, Systems and Computers, ACSSC’06, pp. 598–602 (2006)Google Scholar
  10. 10.
    Gottschlich, C.: Curved-region-based ridge frequency estimation and curved Gabor filters for fingerprint image enhancement. IEEE Trans. Image Proc. 21(4), 2220–2227 (2012)CrossRefMathSciNetGoogle Scholar
  11. 11.
    Bebis, G., Deaconu, T., Georgiopulos, M.: Fingerprint Identification Using Delaunay Triangulation. In: IEEE International Conference on Intelligence, Information, and Systems, ICIIS (1999)Google Scholar
  12. 12.
    Liu, N., Yin, Y., Zhang, H.: A fingerprint matching algorithm based on delaunay triangulation net. In: Proceedings of the 2005 The Fifth International Conference on Computer and Information Technology (CIT05)Google Scholar
  13. 13.
    Liang, X., Bishnu, A., Asano, T.: A robust fingerprint indexing scheme using minutia neighborhood structure and low-order delaunay triangles. IEEE Trans. Inf. Forensics Secur. 2(4), 721–733 (2007)CrossRefGoogle Scholar
  14. 14.
    NIST Biometric Image Software. http://www.nist.gov/itl/iad/ig/nbis.cfm
  15. 15.
    NIST Special Database 4. http://www.nist.gov/srd/nistsd4.cfm
  16. 16.
    Du, Q., Wang, D.: Recent progress in robust and quality delaunay mesh generation. J. Comput. Appl. Math. 195(1–2), 8–23 (2006)CrossRefzbMATHMathSciNetGoogle Scholar
  17. 17.
    Skvortsov, A.V.: A survey of algorithms fro constructing a Delaunay triangulation. Numer. Methods Program. 3, 14–39 (2002). Sect. 1Google Scholar
  18. 18.
    Guibas, L., Knuth, D., Sharir, M.: Randomized incremental construction of Delaunay and Voronoi diagrams. Algorithmica 7, 381–413 (1992)CrossRefzbMATHMathSciNetGoogle Scholar
  19. 19.
    Cappelli, R., Ferrara, M., Maltoni, D.: Minutia cylinder-code: a new representation and matching technique for fingerprint recognition. IEEE Trans. Pattern Anal. Mach. Intell. 32(12), 2128–2141 (2010)CrossRefGoogle Scholar
  20. 20.

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Alexander Dremin
    • 1
  • Mikhail Yu. Khachay
    • 1
  • Anton Leshko
    • 1
    Email author
  1. 1.Krasovsky Institute of Mathematics and MechanicsEkaterinburgRussia

Personalised recommendations