Using Complex Networks for Offline Handwritten Signature Characterization

  • César Armando Beltrán Castañón
  • Ronald Juárez Chambi
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8827)


This paper develops a novel way for offline handwritten signature characterization using a complex networks approach in order to apply for signature verification and identification process. Complex networks can be considered among the areas of graph theory and statistical mechanics. They are suitable for shape recognition due to their properties as invariance to rotation, scale, thickness and noise. Offline signatures images were pre-processed to obtain a skeletonized version. This is represented as an adjacency matrix where there are applied degree descriptors and dynamic evolution property of complex networks in order to generate the feature vector of offline signatures. We used a database composed of 960 offline signatures groups; every group corresponds to one person with 24 genuine and 30 forged signatures. We obtained a true rate of 85.12% for identification and 76.11% for verification. With our proposal it is demonstrated that complex networks provide a promising methodology for the process of identification and verification of offline handwritten signatures and it could be used in applications like document validation.


complex networks pattern recognition offline handwritten signature verification and identification shape analysis image processing 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Pavlidis, T.: A thinning algorithms for discrete binary images. Computer Graphics and Image Processing, 142–157 (1980)Google Scholar
  2. 2.
    Dimauro, G., Impedovo, S., Pirlo, G.: A stroke-oriented approach to signature verification. In: From Pixels to Features III—Frontiers in Handwriting Recognition, pp. 371–384 (1992)Google Scholar
  3. 3.
    Dimauro, G., Impedovo, S., Pirlo, G.: Component-oriented algorithms for signature verification. Pattern Recognition 8(3), 771–794 (1994)CrossRefGoogle Scholar
  4. 4.
    Herbst, N.M., Liu, C.N.: Automatic signature verification based on accelerometry. IBM J. Res. Dev. 21, 245–253 (1977)CrossRefGoogle Scholar
  5. 5.
    Brault, J.J., Plamondon, R.: Segmenting handwritten signatures at their perceptually important points. IEEE Trans. Pattern Anal. 15(9), 953–957 (1993)CrossRefGoogle Scholar
  6. 6.
    Shafiei, M.M., Rabiee, H.R.: New on-line signature verification algorithm using variable length segmentation and hiddenMarkovmodels. In: Proc. 7th Int. Conf. Doc. Anal. Recognit, vol. 1, pp. 443–446 (2003)Google Scholar
  7. 7.
    Sabourin., R., Drouhard, J.P.: Shape matrices as a mixed shape factor for offline signature verification. In: Proc. 4th Int. Conf. Doc. Anal. Recognit, vol. 2, pp. 661–665 (1997)Google Scholar
  8. 8.
    Al-Shoshan, A.I.: Handwritten signature verification using image invariant and dynamic features. In: Proc. Int. Conf. Comput. Graphics, pp. 173–176 (2008)Google Scholar
  9. 9.
    Fierrez-Aguilar, J., Ortega-Garcia, J., Ramos, D.D., Gonzalez-Rodriguez, J.: HMM-based on-line signature verification: Feature extraction and signature modelling. Pattern Recognition 28(16), 2325–2334 (2007)CrossRefGoogle Scholar
  10. 10.
    Huang, K., Yan, H.: Offline signature verification using structural feature correspondence. Pattern Recognition 11, 2467–2477 (2002)CrossRefGoogle Scholar
  11. 11.
    Impedovo, D., Giussepe, P.: Automatic Signature Verification: The State of Art. IEEE Transactions on System, Man and Cybernetics 38(5), 609–635 (2008)Google Scholar
  12. 12.
    Barabási, A.-L.: Linked: The New Science of Networks, USA: Perseus Books Group (2002)Google Scholar
  13. 13.
    Blumenstein, M., Ferrer, M.A., Vargas, J.F.: The 4NSigComp2010 off-line signature verification competition. In: Proceedings of 12th International Conference on Frontiers Handwriting Recognition, Kolkata, India, pp. 16–18 (November 2010)Google Scholar
  14. 14.
    Pavlidis, T.: Algorithms for Graphics and Image Processing, Germany. Springer (1982)Google Scholar
  15. 15.
    Backes, A.R., Casanova, D., Bruno, O.M.: A complex network-based approach for boundary shape analysis. Pattern Recognition 42, 54–67 (2009)CrossRefMATHGoogle Scholar
  16. 16.
    Rivard, D., Granger, E., Sabourin, R.: Multi-feature extraction and selection in writer independent off-line signature verification. IJDAR 16, 83–103 (2013)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • César Armando Beltrán Castañón
    • 1
  • Ronald Juárez Chambi
    • 1
  1. 1.Departamento de Ingenieráa Grupo de Reconocimiento de Patrones e Inteligencia ArtificialPontificia Universidad Católica del PerúLimaPerú

Personalised recommendations