Skip to main content

Uniformly Regular and Singular Riemannian Manifolds

  • Conference paper
  • First Online:
Book cover Elliptic and Parabolic Equations

Part of the book series: Springer Proceedings in Mathematics & Statistics ((PROMS,volume 119))

Abstract

A detailed study of uniformly regular Riemannian manifolds and manifolds with singular ends is carried out in this paper. Such classes of manifolds are of fundamental importance for a Sobolev space solution theory for parabolic evolution equations on noncompact Riemannian manifolds with and without boundary. Besides pointing out this connection in some detail we present large families of uniformly regular and singular manifolds which are admissible for this analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Precise definitions of all concepts used in this introduction without further explanation are found in the main body of this paper—in Sect. 2, in particular.

  2. 2.

    Cf. the localized definitions in Sect. 2.

  3. 3.

    More precisely: \({J=J_{\infty}}\) and \({R\in{\mathcal F}(J)}\).

References

  1. H. Amann, Anisotropic function spaces on singular manifolds (2012). arXiv:1204.0606

    Google Scholar 

  2. H. Amann, Function spaces on singular manifolds. Math. Nachr. 286, 436–475 (2012)

    Article  MathSciNet  Google Scholar 

  3. H. Amann, Parabolic equations on uniformly regular Riemannian manifolds and degenerate initial boundary value problems (2014). arXiv:1403.2418

    Google Scholar 

  4. H. Amann. Parabolic equations on noncompact Riemannian manifolds. (in preparation)

    Google Scholar 

  5. H. Amann, J. Escher, Analysis II (English translation) (Birkhäuser, Ba-sel, 2006)

    MATH  Google Scholar 

  6. Th. Aubin, Nonlinear Analysis on Manifolds. Monge-Ampère Equations (Springer, New York, 1982)

    Book  MATH  Google Scholar 

  7. L. Conlon, Differentiable Manifolds (Birkhäuser, Boston, 2001)

    Book  MATH  Google Scholar 

  8. E.B. Davies, Heat Kernels and Spectral Theory (Cambridge University Press, Cambridge, 1989)

    Book  MATH  Google Scholar 

  9. R. Denk, M. Hieber, J. Prüss, \(\mathcal R\)-boundedness, Fourier multipliers and problems of elliptic and parabolic type. Mem. Amer. Math. Soc., 166(788) (2003)

    Google Scholar 

  10. M. Disconzi, Y. Shao, G. Simonett, Remarks on uniformly regular Riemannian manifolds (2014). (preprint)

    Google Scholar 

  11. J. Eichhorn, The boundedness of connection coefficients and their derivatives. Math. Nachr. 152, 145–158 (1991)

    Google Scholar 

  12. R.E. Greene, Complete metrics of bounded curvature on noncompact manifolds. Arch. Math. (Basel). 31(1), 89–95 (1978/1979)

    Google Scholar 

  13. A. Grigor’yan, Heat Kernel and Analysis on Manifolds. Amer. Math. Soc. (2009)

    Google Scholar 

  14. A. Grigor’yan, L. Saloff-Coste. Heat kernel on manifolds with ends. Ann. Inst. Fourier (Grenoble) 59(5), 1917–1997 (2009).

    Article  MATH  MathSciNet  Google Scholar 

  15. G. Grubb. Parameter-elliptic and parabolic pseudodifferential boundary problems in global L p Sobolev spaces. Math. Z., 218 (1995), 43–90.

    Article  MATH  MathSciNet  Google Scholar 

  16. G. Grubb. Functional Calculus of Pseudodifferential Boundary Problems. (Birkhäuser, Boston, 1996)

    Book  MATH  Google Scholar 

  17. G. Grubb, N.J. Kokholm. A global calculus of parameter-dependent pseudodifferential boundary problems in L p Sobolev spaces. Acta Math., 171 (1993), 165–229.

    Article  MATH  MathSciNet  Google Scholar 

  18. M. Hieber, J. Prüss. Heat kernels and maximal L p-L qestimates for parabolic evolution equations. Comm. Partial Differential Equations 22(9–10), 1647–1669 (1997)

    MATH  MathSciNet  Google Scholar 

  19. M.W. Hirsch, in Differential Topology. Graduate Texts in Mathematics, vol. 33 (Springer, New York, 1994)

    Google Scholar 

  20. V.A. Kondrat’ev, Boundary value problems for elliptic equations in domains with conical or angular points. Trudy Moskov. Mat. Obšč. 16, 209–292 (1967)

    Google Scholar 

  21. A.A. Kosinski, Differential Manifolds. (Academic, Boston, 1993)

    MATH  Google Scholar 

  22. Th. Krainer, Maximal L p-L qregularity for parabolic partial differential equations on manifolds with cylindrical ends. Integral Equations Operator Theory. 63(4), 521–531 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  23. O.A. Ladyzhenskaya, V.A. Solonnikov, N.N. Ural’ceva. Linear and Quasilinear Equations of Parabolic Type (Transl. Math. Monographs). (American Mathematical Society, Providence, 1968)

    Google Scholar 

  24. A.L. Mazzucato, V. Nistor. Mapping properties of heat kernels, maximal regularity, and semi-linear parabolic equations on noncompact manifolds. J. Hyperbolic Differ. Equ. 3(4), 599–629 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  25. V.E. Nazaikinskii, A.Yu. Savin, B.-W. Schulze, B.Yu. Sternin, Elliptic Theory on Singular Manifolds. (Chapman & Hall/CRC, Boca Raton, 2006)

    MATH  Google Scholar 

  26. L. Saloff-Coste, in The Heat Kernel and its Estimates. Probabilistic Approach to Geometry. Adv. Stud. Pure Math., vol. 57 (Mathematical Society of Japan, Tokyo, 2010), pp. 405–436

    Google Scholar 

  27. E. Schrohe, in Spaces of Weighted Symbols and Weighted Sobolev Spaces on Manifolds. Pseudodifferential operators, Oberwolfach, 1986. Lecture Notes in Math., vol. 1256 (Springer, Berlin, 1987), pp. 360–377

    Google Scholar 

  28. M.A. Shubin, Spectral theory of elliptic operators on noncompact manifolds. Astérisque 207(5), 35–108 (1992). (Méthodes semi-classiques, vol. 1, Nantes, 1991)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Herbert Amann .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Amann, H. (2015). Uniformly Regular and Singular Riemannian Manifolds. In: Escher, J., Schrohe, E., Seiler, J., Walker, C. (eds) Elliptic and Parabolic Equations. Springer Proceedings in Mathematics & Statistics, vol 119. Springer, Cham. https://doi.org/10.1007/978-3-319-12547-3_1

Download citation

Publish with us

Policies and ethics