Skip to main content

Toward Metallic Butterfly Wing Scales

  • Chapter
  • First Online:
Metallic Butterfly Wing Scales

Part of the book series: SpringerBriefs in Materials ((BRIEFSMATERIALS))

  • 565 Accesses

Abstract

Till now, natural biostructures have already been converted to a broad range of oxides. To prepare these replicas, metal ions were first coordinated on the surface of biological templates via an impregnation process. The hybrids were subsequently sintered in air under high temperatures to form desired oxides, with the original biological skeletons simultaneously removed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Zhu SM, Zhang D, Li ZQ et al (2008) Precision replication of hierarchical biological structures by metal oxides using a sonochemical method. Langmuir 24:6292–6299

    Article  Google Scholar 

  2. Zhang W, Zhang D, Fan TX et al (2009) Novel photoanode structure templated from butterfly wing scales. Chem Mater 21:33–40

    Article  Google Scholar 

  3. Zhang W, Zhang D, Fan TX et al (2006) Biomimetic zinc oxide replica with structural color using butterfly (Ideopsis similis) wings as templates. Bioinspir Biomim 1:89–95

    Article  Google Scholar 

  4. Liu XY, Zhu SM, Zhang D et al (2010) Replication of butterfly wing in TiO2 with ordered mesopores assembled inside for light harvesting. Mater Lett 64:2745–2747

    Article  Google Scholar 

  5. Chen Y, Gu JJ, Zhang D et al (2011) Tunable three-dimensional ZrO2 photonic crystals replicated from single butterfly wing scales. J Mater Chem 21:15237–15243

    Article  Google Scholar 

  6. Wang J, Chen X, Wang G et al (2002) Melting behavior in ultrathin metallic nanowires. Phys Rev B 66:085408

    Article  Google Scholar 

  7. Lisiecki I, Sack-Kongehl H, Weiss K et al (2000) Annealing process of anisotropic copper nanocrystals. Langmuir 16:8807–8808

    Article  Google Scholar 

  8. Qin Y, Staedler T, Jiang X (2007) Preparation of aligned Cu nanowires by room-temperature reduction of CuO nanowires in electron cyclotron resonance hydrogen plasma. Nanotechnology 18:035608

    Article  Google Scholar 

  9. Dippel M, Maier A, Gimple V et al (2001) Size-dependent melting of self-assembled indium nanostructures. Phys Rev Lett 87:095505

    Article  Google Scholar 

  10. Link S, Wang ZL, El-Sayed MA (2000) How does a gold nanorod melt? J Phys Chem B 104:7867–7870

    Article  Google Scholar 

  11. Payne EK, Rosi NL, Xue C et al (2005) Sacrificial biological templates for the formation of nanostructured metallic microshells. Angew Chem Int Ed 44:5064–5067

    Article  Google Scholar 

  12. Garrett NL, Vukusic P, Ogrin F et al (2009) Spectroscopy on the wing: Naturally inspired SERS substrates for biochemical analysis. J Biophoton 2:157–166

    Article  Google Scholar 

  13. Bao ZH, Ernst EM, Yoo S et al (2009) Syntheses of porous self-supporting metal-nanoparticle assemblies with 3D morphologies inherited from biosilica templates (diatom frustules). Adv Mater 21:474–478

    Article  Google Scholar 

  14. Wang QQ, Han JB, Gong HM et al (2006) Linear and nonlinear optical properties of ag nanowire polarizing glass. Adv Funct Mater 16:2405–2408

    Article  Google Scholar 

  15. Rivas L, Sanchez-Cortes S, García-Ramos JV et al (2000) Mixed silver/gold colloids: a study of their formation, morphology, and surface-enhanced Raman activity. Langmuir 16:9722–9728

    Article  Google Scholar 

  16. Sun YG, Lei CH (2009) Synthesis of out-of-substrate Au-Ag nanoplates with enhanced stability for catalysis. Angew Chem Int Ed 48:6824–6827

    Article  Google Scholar 

  17. Wang W, Yang Q, Fan F et al (2011) Light propagation in curved silver nanowire plasmonic waveguides. Nano Lett 11:1603–1608

    Article  Google Scholar 

  18. Drachev VP, Nashine VC, Thoreson MD et al (2005) Adaptive silver films for detection of antibody-antigen binding. Langmuir 21:8368–8373

    Article  Google Scholar 

  19. Bao ZH, Weatherspoon MR, Shian S et al (2007) Chemical reduction of three-dimensional silica micro-assemblies into microporous silicon replicas. Nature 446:172–175

    Article  Google Scholar 

  20. Kinoshita S, Yoshioka S, Miyazaki J (2008) Physics of structural colors. Rep Prog Phys 71:076401

    Article  Google Scholar 

  21. Mason CW (1925) Structural colors in insects. I. J Phys Chem 30:383–395

    Article  Google Scholar 

  22. Mason CW (1926) Structural colors in insects. II. J Phys Chem 31:321–354

    Article  Google Scholar 

  23. Chen Y, Gu JJ, Zhu SM et al (2009) Iridescent large-area ZrO2 photonic crystals using butterfly as templates. Appl Phy Lett 94:053901

    Article  Google Scholar 

  24. Tan YW, Gu JJ, Xu W et al (2013) Reduction of cuo butterfly wing scales generates Cu SERS substrates for DNA base detection. ACS Appl Mater Interfaces 5:9878–9882

    Article  Google Scholar 

  25. Vukusic P, Sambles JR, Lawrence CR (2004) Structurally assisted blackness in butterfly scales. Proc Biol Sci Roy Soc 271 Suppl 4:4S237–S239

    Google Scholar 

  26. Koon DW, Crawford AB (2000) Insect thin films as sun blocks, not solar collectors. Appl Opt 39:2496–2498

    Article  Google Scholar 

  27. Heilman BD, Miaoulis LN (1994) Insect thin films as solar collectors. Appl Opt 33:6642–6647

    Article  Google Scholar 

  28. Han J, Su HL, Zhang D et al (2009) Butterfly wings as natural photonic crystal scaffolds for controllable assembly of cds nanoparticles. J Mater Chem 19:8741–8746

    Article  Google Scholar 

  29. Richards AG (1947) Studies on arthropod cuticle. I. The distribution of chitin in lepidopterous scales, and its bearing on the interpretation of arthropod cuticle. Ann Entomol Soc Am 40:227–240

    Google Scholar 

  30. Ravi Kumar MNV (2000) A review of chitin and chitosan applications. Reactive Funct Polym 46:1–27

    Article  Google Scholar 

  31. Mathew AP, Laborie M-PG, Oksman K (2009) Cross-linked chitosan/chitin crystal nanocomposites with improved permeation selectivity and pH stability. Biomacromolecules 10:1627–1632

    Article  Google Scholar 

  32. Tan YW, Zang XN, Gu JJ et al (2011) Morphological effects on surface-enhanced Raman scattering from silver butterfly wing scales synthesized via photoreduction. Langmuir 27:11742–11746

    Article  Google Scholar 

  33. Lanigan KC, Pidsosny K (2007) Reflectance FTIR spectroscopic analysis of metal complexation to EDTA and EDDS. Vib Spectrosc 45:2–9

    Article  Google Scholar 

  34. Bellamy LJ (1980) The infrared spectra of complex molecules. Chapman and Hall Ltd., London

    Google Scholar 

  35. Langer HG (1963) Infrared spectra of ethylenediaminetetraacetic acid (EDTA). Inorg Chem 2:1080–1082

    Article  Google Scholar 

  36. Satroutdinov AD, Dedyukhina EG, Chistyakova TYI et al (2000) Degradation of metal-EDTA complexes by resting cells of the bacterial strain DSM 9103. Environ Sci Technol 34:1715–1720

    Article  Google Scholar 

  37. Chen L, Liu T, Ma CA (2009) Metal complexation and biodegradation of EDTA and S, S-EDDS: A density functional theory study. J Phys Chem A 114:443–454

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiajun Gu .

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Jiajun Gu, Di Zhang, and Yongwen Tan

About this chapter

Cite this chapter

Gu, J., Zhang, D., Tan, Y. (2015). Toward Metallic Butterfly Wing Scales. In: Metallic Butterfly Wing Scales. SpringerBriefs in Materials. Springer, Cham. https://doi.org/10.1007/978-3-319-12535-0_2

Download citation

Publish with us

Policies and ethics