Opinion Retrieval: Searching for Opinions in Social Media

  • Georgios Paltoglou
  • Anastasia Giachanou
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8830)


Opinion retrieval deals with discovery and retrieval of content, primarily from social media, that is relevant to the user’s information needs and contains opinions that pertain to them. It combines methodologies and approaches from two distinct areas of research: information retrieval and sentiment analysis. The former deals with the representation, storage and access to information, while the latter focuses on the detection, extraction and analysis of affective content. In this chapter, we will provide a brief but concise introduction to the area, focusing on the most relevant and influential work that has taken place in both distinct areas of research, as well as discuss how those approaches can be combined effectively and efficiently to fulfill the field’s stated goal.


Social media sentiment analysis opinion mining opinion retrieval information retrieval 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Zeng, D., Chen, H., Lusch, R., Li, S.H.: Social media analytics and intelligence. IEEE Intelligent Systems 25(6), 13–16 (2010)CrossRefGoogle Scholar
  2. 2.
    Macdonald, C., Ounis, I., Soboroff, I.: Overview of the trec-2008 blog track. In: Proc. TREC 2008 (2008)Google Scholar
  3. 3.
    Baeza-Yates, R.A., Ribeiro-Neto, B.: Modern Information Retrieval. Addison-Wesley Longman Publishing Co., Inc., Boston (1999)Google Scholar
  4. 4.
    Pang, B., Lee, L.: Opinion mining and sentiment analysis. Found. Trends Inf. Retr. 2(1-2), 1–135 (2008)CrossRefGoogle Scholar
  5. 5.
    Liu, B.: Sentiment Analysis and Opinion Mining. Synthesis Lectures on Human Language Technologies. Morgan & Claypool Publishers (2012)Google Scholar
  6. 6.
    Bilton, N.: The growing business of online reputation management. New York Times (April 4, 2011), (last accessed January 23, 2014)
  7. 7.
    Tozzi, J.: Do reputation management services work? Bloomberg Bussiness Week (April 30, 2008), (last accessed January 23, 2014)
  8. 8.
    Schawbel, D.: Do reputation management services work? Mashable (December 29, 2008), (last accessed January 23, 2014)
  9. 9.
    Wilson, T., Wiebe, J., Hoffmann, P.: Recognizing contextual polarity in phrase-level sentiment analysis. In: Proc. EMNLP 2005, pp. 347–354 (2005)Google Scholar
  10. 10.
    Baccianella, S., Esuli, A., Sebastiani, F.: Sentiwordnet 3.0. In: Proc. LREC 2010 (2010)Google Scholar
  11. 11.
    Pang, B., Lee, L., Vaithyanathan, S.: Thumbs up? Sentiment classification using machine learning techniques. In: Proc. EMNLP 2002, pp. 79–86 (2002)Google Scholar
  12. 12.
    Wilson, T., Hoffmann, P., Somasundaran, S., Kessler, J., Wiebe, J., Choi, Y., Cardie, C., Riloff, E., Patwardhan, S.: Opinionfinder: A system for subjectivity analysis. In: Proc. HLT-Demo 2005, pp. 34–35 (2005)Google Scholar
  13. 13.
    Thelwall, M., Buckley, K., Paltoglou, G., Di, C., Kappas, A.: Sentiment strength detection in short informal text. JASIST 61(12), 2544–2558 (2010)CrossRefGoogle Scholar
  14. 14.
    Zhang, W., Yu, C., Meng, W.: Opinion retrieval from blogs. In: Proc. CIKM 2007, pp. 831–840 (2007)Google Scholar
  15. 15.
    Santos, R.L.T., He, B., Macdonald, C., Ounis, I.: Integrating proximity to subjective sentences for blog opinion retrieval. In: Boughanem, M., Berrut, C., Mothe, J., Soule-Dupuy, C. (eds.) ECIR 2009. LNCS, vol. 5478, pp. 325–336. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  16. 16.
    He, B., Macdonald, C., Ounis, I.: Ranking opinionated blog posts using opinionfinder. In: Proc. SIGIR 2008, pp. 727–728 (2008)Google Scholar
  17. 17.
    Bollen, J., Mao, H., Zeng, X.: Twitter mood predicts the stock market. Journal of Computational Science (2011)Google Scholar
  18. 18.
    Lerman, K., Gilder, A., Dredze, M., Pereira, F.: Reading the markets: Forecasting public opinion of political candidates by news analysis. In: Proc. COLING 2008, pp. 473–480 (2008)Google Scholar
  19. 19.
    Asur, S., Huberman, B.A.: Predicting the future with social media. In: Proc. WI-IAT 2010, pp. 492–499 (2010)Google Scholar
  20. 20.
    Boughanem, M.: Information retrieval and social media. In: Amine, A., Mohamed, O.A., Bellatreche, L. (eds.) Modeling Approaches and Algorithms. SCI, vol. 488, p. 7. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  21. 21.
    Thelwall, M.: Myspace comments. Online Information Review 33(1), 58–76 (2009)CrossRefGoogle Scholar
  22. 22.
    Han, B., Cook, P., Baldwin, T.: Lexical normalization for social media text. ACM Trans. Intell. Syst. Technol. 4(1), 5:1–5:27 (2013)Google Scholar
  23. 23.
    Ritter, A., Clark, S., Mausam, E.O.: Named entity recognition in tweets: An experimental study. In: Proc. EMNLP 2011, pp. 1524–1534 (2011)Google Scholar
  24. 24.
    Gimpel, K., Schneider, N., O’Connor, B., Das, D., Mills, D., Eisenstein, J., Heilman, M., Yogatama, D., Flanigan, J., Smith, N.A.: Part-of-speech tagging for twitter: Annotation, features, and experiments. In: Proc. HLT 2011, pp. 42–47 (2011)Google Scholar
  25. 25.
    Sproat, R., Black, A.W., Chen, S.F., Kumar, S., Ostendorf, M., Richards, C.: Normalization of non-standard words. Computer Speech and Language 15(3), 287–333 (2001)CrossRefGoogle Scholar
  26. 26.
    Lafferty, J.D., McCallum, A., Pereira, F.C.N.: Conditional random fields: Probabilistic models for segmenting and labeling sequence data. In: Proc. ICML 2001, pp. 282–289 (2001)Google Scholar
  27. 27.
    Kaufmann, M., Kalita, J.: Syntactic normalization of Twitter messages. In: Proc. ICON 2010, Chennai, India (2010)Google Scholar
  28. 28.
    Koehn, P., Hoang, H., Birch, A., Callison-Burch, C., Federico, M., Bertoldi, N., Cowan, B., Shen, W., Moran, C., Zens, R., Dyer, C., Bojar, O., Constantin, A., Herbst, E.: Moses: Open source toolkit for statistical machine translation. In: Proc. ACL 2007, pp. 177–180 (2007)Google Scholar
  29. 29.
    Page, L., Brin, S., Motwani, R., Winograd, T.: The pagerank citation ranking: Bringing order to the web. In: Proc. WWW 1998, pp. 161–172 (1998)Google Scholar
  30. 30.
    Lempel, R., Moran, S.: Salsa: The stochastic approach for link-structure analysis. ACM Trans. Inf. Syst. 19(2), 131–160 (2001)CrossRefGoogle Scholar
  31. 31.
    Kirchhoff, L., Bruns, A., Nicolai, T.: Investigating the impact of the blogosphere: Using pagerank to determine the distribution of attention. In: Association of Internet Researchers (2007)Google Scholar
  32. 32.
    Lin, C.L., Kao, H.Y.: Blog popularity mining using social interconnection analysis. IEEE Internet Computing 14(4), 41–49 (2010)Google Scholar
  33. 33.
    Adar, E., Zhang, L., Adamic, L., Lukose, R.: Implicit structure and the dynamics of blogspace. In: Workshop on the Weblogging Ecosystem, vol. 13 (2004)Google Scholar
  34. 34.
    Kwak, H., Lee, C., Park, H., Moon, S.: What is twitter, a social network or a news media? In: Proc. WWW 2010, pp. 591–600 (2010)Google Scholar
  35. 35.
    Weng, J., Lim, E.P., Jiang, J., He, Q.: Twitterrank: Finding topic-sensitive influential twitterers. In: Proc. WSDM 2010, pp. 261–270 (2010)Google Scholar
  36. 36.
    Tunkelang, D.: A twitter analog to pagerank. The Noisy Channel (2009), (last visited: December 13, 2013)
  37. 37.
    Jones, K.S., Walker, S., Robertson, S.E.: A probabilistic model of information retrieval: Development and comparative experiments. Inf. Process. Manage. 36(6), 779–808 (2000)CrossRefGoogle Scholar
  38. 38.
    Lavrenko, V., Croft, W.B.: Relevance-based language models. In: Proc. SIGIR 2001, pp. 120–127 (2001)Google Scholar
  39. 39.
    Ferguson, P., O’Hare, N., Lanagan, J., Phelan, O., McCarthy, K.: An investigation of term weighting approaches for microblog retrieval. In: Baeza-Yates, R., de Vries, A.P., Zaragoza, H., Cambazoglu, B.B., Murdock, V., Lempel, R., Silvestri, F. (eds.) ECIR 2012. LNCS, vol. 7224, pp. 552–555. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  40. 40.
    Massoudi, K., Tsagkias, M., de Rijke, M., Weerkamp, W.: Incorporating query expansion and quality indicators in searching microblog posts. In: Clough, P., Foley, C., Gurrin, C., Jones, G.J.F., Kraaij, W., Lee, H., Mudoch, V. (eds.) ECIR 2011. LNCS, vol. 6611, pp. 362–367. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  41. 41.
    Metzler, D., Croft, W.B.: A markov random field model for term dependencies. In: Proc. SIGIR 2005, pp. 472–479 (2005)Google Scholar
  42. 42.
    Metzler, D., Cai, C.: Usc/isi at trec 2011: Microblog track. In: Proc. TREC (2011)Google Scholar
  43. 43.
    Metzler, D., Cai, C., Hovy, E.: Structured event retrieval over microblog archives. In: Proc. NAACL HLT 2012, pp. 646–655 (2012)Google Scholar
  44. 44.
    Ounis, I., Macdonald, C., Lin, J., Soboroff, I.: Overview of the trec-2011 microblog track. In: Proc. TREC 2011, pp. 1–13 (2011)Google Scholar
  45. 45.
    Paltoglou, G.: Sentiment analysis in social media. In: Agarwal, N., Lim, M., Wigard, R. (eds.) Online Collective Action: Dynamics of the Crowd in Social Media. Lecture Notes in Social Networks Series. Springer International Publishing (in press)Google Scholar
  46. 46.
    Kim, S.M., Hovy, E.: Determining the sentiment of opinions. In: Proc. COLING 2004 (2004)Google Scholar
  47. 47.
    Maynard, D., Funk, A.: Automatic detection of political opinions in tweets. In: García-Castro, R., Fensel, D., Antoniou, G. (eds.) ESWC 2011. LNCS, vol. 7117, pp. 88–99. Springer, Heidelberg (2012)Google Scholar
  48. 48.
    Cunningham, H., Maynard, D., Bontcheva, K., Tablan, V., Aswani, N., Roberts, I., Gorrell, G., Funk, A., Roberts, A., Damljanovic, D., Heitz, T., Greenwood, M.A., Saggion, H., Petrak, J., Li, Y., Peters, W.: Text Processing with GATE, Version 6 (2011)Google Scholar
  49. 49.
    Choi, Y., Cardie, C., Riloff, E., Patwardhan, S.: Identifying sources of opinions with conditional random fields and extraction patterns. In: Proc. HLT/EMNLP (2005)Google Scholar
  50. 50.
    Titov, I., McDonald, R.: Modeling online reviews with multi-grain topic models. In: Proc. WWW 2008, pp. 111–120 (2008)Google Scholar
  51. 51.
    Kim, S.M., Hovy, E.: Automatic identification of pro and con reasons in online reviews. In: Proc. COLING-ACL 2006, pp. 483–490 (2006)Google Scholar
  52. 52.
    Ma, T., Wan, X.: Opinion target extraction in chinese news comments. In: Proc. COLING 2010, pp. 782–790 (2010)Google Scholar
  53. 53.
    Grosz, B.J., Weinstein, S., Joshi, A.K.: Centering: A framework for modeling the local coherence of discourse. Comput. Linguist. 21, 203–225 (1995)Google Scholar
  54. 54.
    Gabrilovich, E., Markovitch, S.: Computing semantic relatedness using wikipedia-based explicit semantic analysis. In: Proc. IJCAI 2007, pp. 1606–1611 (2007)Google Scholar
  55. 55.
    Jakob, N., Gurevych, I.: Extracting opinion targets in a single- and cross-domain setting with conditional random fields. In: Proc. EMNLP 2010, pp. 1035–1045 (2010)Google Scholar
  56. 56.
    Titov, I., McDonald, R.: Modeling online reviews with multi-grain topic models. In: Proc. WWW 2008, pp. 111–120 (2008)Google Scholar
  57. 57.
    Whitelaw, C., Garg, N., Argamon, S.: Using appraisal groups for sentiment analysis. In: Proc. CIKM 2005, pp. 625–631 (2005)Google Scholar
  58. 58.
    Thomas, M., Pang, B., Lee, L.: Get out the vote: Determining support or opposition from Congressional floor-debate transcripts. In: Proc. EMNLP 2006, pp. 327–335 (2006)Google Scholar
  59. 59.
    Lin, W.H., Wilson, T., Wiebe, J., Hauptmann, A.: Which side are you on? identifying perspectives at the document and sentence levels. In: Proc. CoNLL 2006 (2006)Google Scholar
  60. 60.
    Chmiel, A., Sienkiewicz, J., Thelwall, M., Paltoglou, G., Buckley, K., Kappas, A., Hoyst, J.A.: Collective emotions online and their influence on community life. PLoS ONE 6(7), e22207 (2011)Google Scholar
  61. 61.
    Barrett, L.F., Russell, J.A.: The structure of current affect: Controversies and emerging consensus. Current Directions in Psychological Science 8(1) (1999)Google Scholar
  62. 62.
    Paltoglou, G., Theunis, M., Kappas, A., Thelwall, M.: Predicting emotional responses to long informal text. T. Affective Computing 4(1), 106–115 (2013)CrossRefGoogle Scholar
  63. 63.
    Gonzalez-Bailon, S., Banchs, R.E., Kaltenbrunner, A.: Emotional reactions and the pulse of public opinion: Measuring the impact of political events on the sentiment of online discussions. CoRR abs/1009.4019 (2010)Google Scholar
  64. 64.
    Dodds, P., Danforth, C.: Measuring the happiness of Large-Scale written expression: Songs, blogs, and presidents. Journal of Happiness Studies (July 2009)Google Scholar
  65. 65.
    Mishne, G.: Experiments with mood classification in blog posts. In: 1st Workshop on Stylistic Analysis of Text for Information Access (2005)Google Scholar
  66. 66.
    Bollen, J., Mao, H., Pepe, A.: Modeling public mood and emotion: Twitter sentiment and socio-economic phenomena. In: Proc. ICWSM 2011 (2011)Google Scholar
  67. 67.
    Dalgleish, T., Power, M.: Handbook of Cognition and Emotion. John Wiley & Sons (March 1999)Google Scholar
  68. 68.
    Strapparava, C., Mihalcea, R.: Semeval-2007 task 14: Affective text. In: Proc. SemEval 2007, pp. 70–74 (2007)Google Scholar
  69. 69.
    Mauss, I.B., Robinson, M.D.: Measures of emotion: A review. Cognition & Emotion 23(2), 209–237 (2009)CrossRefGoogle Scholar
  70. 70.
    Paltoglou, G., Thelwall, M., Buckely, K.: Online textual communication annotated with grades of emotion strength. In: Proc. EMOTION 2010, pp. 25–31 (2010)Google Scholar
  71. 71.
    Paltoglou, G., Thelwall, M.: More than bag-of-words: Sentence-based document representation for sentiment analysis. In: Proc. RANLP 2013, pp. 546–552 (2013)Google Scholar
  72. 72.
    Chen, H., Zimbra, D.: Ai and opinion mining. IEEE Intelligent Systems 25, 74–80 (2010)CrossRefGoogle Scholar
  73. 73.
    Platt, J.C.: Fast training of support vector machines using sequential minimal optimization, pp. 185–208 (1999)Google Scholar
  74. 74.
    John, G.H., Langley, P.: Estimating continuous distributions in bayesian classifiers, pp. 338–345 (1995)Google Scholar
  75. 75.
    Agarwal, A., Xie, B., Vovsha, I., Rambow, O., Passonneau, R.: Sentiment analysis of twitter data. In: Proc. LSM 2011, pp. 30–38 (2011)Google Scholar
  76. 76.
    Zaidan, O., Eisner, J., Piatko, C.D.: Using annotator rationales to improve machine learning for text categorization. In: Proc. HLT-NAACL, pp. 260–267 (2007)Google Scholar
  77. 77.
    Socher, R., Perelygin, A., Wu, J., Chuang, J., Manning, C.D., Ng, A.Y., Potts, C.: Recursive deep models for semantic compositionality over a sentiment treebank. In: Proc. EMNLP 2013, pp. 1631–1642 (2013)Google Scholar
  78. 78.
    Ponomareva, N., Thelwall, M.: Biographies or blenders: Which resource is best for cross-domain sentiment analysis? In: Gelbukh, A. (ed.) CICLing 2012, Part I. LNCS, vol. 7181, pp. 488–499. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  79. 79.
    Paltoglou, G., Buckley, K.: Subjectivity annotation of the microblog 2011 realtime adhoc relevance judgments. In: Serdyukov, P., Braslavski, P., Kuznetsov, S.O., Kamps, J., Rüger, S., Agichtein, E., Segalovich, I., Yilmaz, E. (eds.) ECIR 2013. LNCS, vol. 7814, pp. 344–355. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  80. 80.
    Pak, A., Paroubek, P.: Twitter as a corpus for sentiment analysis and opinion mining. In: Proc. LREC 2010 (2010)Google Scholar
  81. 81.
    Brew, A., Greene, D., Cunningham, P.: Using crowdsourcing and active learning to track sentiment in online media. In: Proc. ECAI 2010, pp. 145–150 (2010)Google Scholar
  82. 82.
    Blitzer, J., Dredze, M., Pereira, F.: Biographies, bollywood, boom-boxes and blenders: Domain adaptation for sentiment classification. In: Proc. ACL 2007, pp. 440–447 (2007)Google Scholar
  83. 83.
    Blitzer, J., McDonald, R., Pereira, F.: Domain adaptation with structural correspondence learning. In: Proc. EMNLP 2006, pp. 120–128 (2006)Google Scholar
  84. 84.
    Ponomareva, N., Thelwall, M.: Do neighbours help? an exploration of graph-based algorithms for cross-domain sentiment classification. In: Proc. EMNLP-CoNLL 2012, pp. 655–665 (2012)Google Scholar
  85. 85.
    Paltoglou, G., Thelwall, M.: Twitter, myspace, digg: Unsupervised sentiment analysis in social media. ACM Trans. Intell. Syst. Technol. 3(4), 66:1–66:19 (2012)Google Scholar
  86. 86.
    Taboada, M., Brooke, J., Tofiloski, M., Voll, K., Stede, M.: Lexicon-based methods for sentiment analysis. Comput. Linguist. 37(2), 267–307 (2011)CrossRefGoogle Scholar
  87. 87.
    Pennebaker, J.W., Francis, M.E.: Linguistic Inquiry and Word Count, 1st edn. Lawrence Erlbaum (1999)Google Scholar
  88. 88.
    Bradley, M.M., Lang, P.J.: Affective norms for English words (ANEW): Instruction manual and affective ratings (1999)Google Scholar
  89. 89.
    Strapparava, C., Valitutti, A.: WordNet-Affect: An affective extension of WordNet. In: Proc. LREC 2004, vol. 4, pp. 1083–1086 (2004)Google Scholar
  90. 90.
    Paltoglou, G., Gobron, S., Skowron, M., Thelwall, M., Thalmann, D.: Sentiment analysis of informal textual communication in cyberspace. In: Proc. ENGAGE 2010, pp. 13–25 (2010)Google Scholar
  91. 91.
    Jijkoun, V., de Rijke, M., Weerkamp, W.: Generating focused topic-specific sentiment lexicons. In: Proc. ACL 2008, pp. 585–594 (2010)Google Scholar
  92. 92.
    Miller, G.A.: Wordnet: A lexical database for english. Commun. ACM 38(11), 39–41 (1995)CrossRefGoogle Scholar
  93. 93.
    Owsley, S., Sood, S., Hammond, K.J.: Domain specific affective classification of documents. In: Proc. AAAICAAW 2006, pp. 181–183 (2006)Google Scholar
  94. 94.
    Bollen, J., Pepe, A., Mao, H.: Modeling public mood and emotion: Twitter sentiment and socio-economic phenomena. CoRR abs/0911.1583 (2009)Google Scholar
  95. 95.
    Qiu, L., Zhang, W., Hu, C., Zhao, K.: Selc: A self-supervised model for sentiment classification. In: Proc. CIKM 2009, pp. 929–936 (2009)Google Scholar
  96. 96.
    Prabowo, R., Thelwall, M.: Sentiment analysis: A combined approach. Journal of Informetrics 3(2), 143–157 (2009)CrossRefGoogle Scholar
  97. 97.
    Yang, K., Yu, N., Valerio, A., Zhang, H.: Widit in trec 2006 blog track. In: Proc. TREC 2006 (2006)Google Scholar
  98. 98.
    Yang, K., Yu, N., Valerio, A., Zhang, H., Ke, W.: Fusion approach to finding opinions in blogosphere. In: Proc. ICWSM (2007)Google Scholar
  99. 99.
    Zhu, J., Wang, H., Zhu, M., Tsou, B.K., Ma, M.: Aspect-based opinion polling from customer reviews. IEEE Trans. Affect. Comput. 2(1) (2011)Google Scholar
  100. 100.
    Zhu, J., Wang, H., Tsou, B.K., Zhu, M.: Multi-aspect opinion polling from textual reviews. In: Proc. CIKM 2009, pp. 1799–1802 (2009)Google Scholar
  101. 101.
    Hunt, E.B., Marin, J., Stone, P.J.: Experiments in induction (1966)Google Scholar
  102. 102.
    Kamps, J., Mokken, R.J., Marx, M., de Rijke, M.: Using WordNet to measure semantic orientation of adjectives. In: Proc. LREC 2004, pp. 1115–1118 (2004)Google Scholar
  103. 103.
    Dietz, L., Wang, Z., Huston, S., Croft, W.B.: Retrieving opinions from discussion forums. In: Proc. CIKM 2013, pp. 1225–1228 (2013)Google Scholar
  104. 104.
    Huang, X., Croft, W.B.: A unified relevance model for opinion retrieval. In: Proc, CIKM 2009, pp. 947–956 (2009)Google Scholar
  105. 105.
    He, B., Macdonald, C., He, J., Ounis, I.: An effective statistical approach to blog post opinion retrieval. In: Proc. CIKM 2008, pp. 1063–1072 (2008)Google Scholar
  106. 106.
    Zhang, M., Ye, X.: A generation model to unify topic relevance and lexicon-based sentiment for opinion retrieval. In: Proc. SIGIR 2008, pp. 411–418 (2008)Google Scholar
  107. 107.
    Jijkoun, V., de Rijke, M., Weerkamp, W.: Generating focused topic-specific sentiment lexicons. In: Proc. ACL 2010, pp. 585–594 (2010)Google Scholar
  108. 108.
    Na, S.-H., Lee, Y., Nam, S.-H., Lee, J.-H.: Improving opinion retrieval based on query-specific sentiment lexicon. In: Boughanem, M., Berrut, C., Mothe, J., Soule-Dupuy, C. (eds.) ECIR 2009. LNCS, vol. 5478, pp. 734–738. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  109. 109.
    Amati, G., Van Rijsbergen, C.J.: Probabilistic models of information retrieval based on measuring the divergence from randomness. ACM Trans. Inf. Syst. 20(4), 357–389 (2002)CrossRefGoogle Scholar
  110. 110.
    Peng, J., Macdonald, C., He, B., Plachouras, V., Ounis, I.: Incorporating term dependency in the dfr framework. In: Proc. SIGIR 2007, pp 843–844 (2007)Google Scholar
  111. 111.
    Zhang, W., Jia, L., Yu, C., Meng, W.: Improve the effectiveness of the opinion retrieval and opinion polarity classification. In: Proc. CIKM 2008, pp. 1415–1416 (2008)Google Scholar
  112. 112.
    Luo, Z., Osborne, M., Wang, T.: Opinion retrieval in twitter. In: Proc. ICWSM 2012 (2012)Google Scholar
  113. 113.
    Li, H.: Learning to Rank for Information Retrieval and Natural Language Processing. Synthesis Lectures on Human Language Technologies. Morgan and Claypool Publishers (2011)Google Scholar
  114. 114.
    Macdonald, C., Ounis, I., Soboroff, I.: Overview of trec-2009 blog track. In: Proc. TREC 2009 (2009)Google Scholar
  115. 115.
    Macdonald, C., Santos, R.L., Ounis, I., Soboroff, I.: Blog track research at trec. SIGIR Forum 44(1), 58–75 (2010)CrossRefGoogle Scholar
  116. 116.
    Macdonald, C., Ounis, I.: The TREC Blogs06 collection: creating and analysing a blog test collection. Technical report, Department of Computer Science, University of Glasgow (2006)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Georgios Paltoglou
    • 1
  • Anastasia Giachanou
    • 2
  1. 1.School of Mathematics and Computer Science, Faculty of Science and EngineeringUniversity of WolverhamptonUK
  2. 2.Faculty of InformaticsUniversity of LuganoLuganoSwitzerland

Personalised recommendations